‘\‘, ActiViz .NET

ActiViz .NET User's Guide

Version 9.5

& kitware

© 2008-2025 Kitware, Inc. & Kitware SAS
http://www.kitware.com

For More Information:

e Kitware provides training for VTK and ActiViz. Learn more at
https://www.kitware.eu/training

e Kitware provides support and consulting services for ActiViz at
https://www.kitware.eu/what-we-offer/#support

® Books explaining the theory and use of VTK are available from

https://www.kitware.eu/what-we-offer/#books
e VTK examples and documentation

Contributors:

Jeff Baumes — Wikipedia Browser

David Cole — Technical Lead

Jon Crall — Technical Contributor, Wikipedia Browser, examples
Bill Hoffman — Technical Contributor

Niki Russell — Documentation, web support

Will Schroeder — Documentation, examples

Tristan Coulange — Technical Contributor

Lucas Gandel — Technical Lead

Alexy Pellegrini — Technical Contributor

and the world-wide VTK community at hitp://www.vtk.org.

VIK

Join the VTK Community at http.//www.vtk.org

http://www.kitware.com/
https://www.kitware.eu/training
http://www.kitware.com/products/support.html
https://www.kitware.eu/what-we-offer/#support
http://www.kitware.com/products/books.html
https://www.kitware.eu/what-we-offer/#books
https://examples.vtk.org/site/
https://docs.vtk.org/en/latest/
http://www.vtk.org/
http://www.vtk.org/

Table of Contents
1. Introduction
1.1. What is ActiViz .NET?
1.2. What is VTK?
1.3. How ActiViz .NET Differs from VTK
1.4. Licensing
2. Getting ActiViz .NET
3. Installing ActiViz NET
3.1. System Requirements
3.2. Installation With Installer (Windows)
3.3. Installation With NuGet
Visual Studio
Command line
3.4. ActiViz Control in Visual Studio
4. Using ActiViz .NET

4.1. Activiz .NET Core Nuget Package (Recommended)

4.2. ActiViz NET Framework Reference

4.3. A Ridiculously Brief Overview of VTK

4.4. Hello VTK - Console Application

4.5. Hello VTK - Windows Form Application

4.6. Hello VTK - WPF Application
4.7. Hello VTK - Avalonia Application
4.8. VTK events and observers
5. ActiViz on the Web
6. ActiViz in Unity
7. Examples
7.1. Load Image Files Dialog
7.2. Delaunay Triangulation
7.3. Box Widget
7.4. Streamline Generation
7.5. Wikipedia Browser
7.6. Sphere Puzzle
7.7. Volume Rendering
7.8. Cube Axes Actor
7.9. Decimation
7.10. File Browser
8. For More Information

AN &N &N N L W

A PbA B W W W W W W W W W W WN PN NN /= = = = e = a2
W — O O W 0 U A W W W N O O QPO I PP D> &~ 200

1.

1.1.

1.2.

1.3.

8.1. Manual Pages

8.2. VTK.org Web Site

8.3. More Examples

8.4. VTK Books

8.5. Related Software

ActiViz NET OpenSource Edition
ActiViz .NET Supported Edition

Introduction

Welcome to the ActiViz .NET User's Guide. This document is organized into several
parts: introduction, installation guide, tutorial by example, and additional information.
The introduction provides a high-level overview of ActiViz .NET. The installation guide
explains how to install the software. Once installed, you can try out the examples
distributed with this software, and follow the tutorial by example section in preparation to
writing your own code. Finally, if you would like to learn more, see the final section
which provides links to related information.

What is ActiViz .NET?

ActiViz NET provides an integration layer for The Visualization Toolkit (see the next
section for more information about VTK) enabling VTK to be used in the Microsoft

NET framework. This means that you can tap into the power of VIK using .NET
programming languages such as C# and Visual Basic .NET. ActiViz .NET is designed for
the application developer creating software in the Microsoft .NET framework. While the
system does come with a useful application (i.e., the Wikipedia Browser), realizing the
full power of ActiViz .NET requires you to write software programs.

What is VTK?

VTK, or the Visualization Toolkit, is an object-oriented software system for 3D graphics,
data visualization, data processing, human-computer interaction, information
visualization, volume rendering and much more. It has been under development for
decades, and is used by researchers, developers and businesses from around the world.
VTK is used to view large datasets in supercomputing environments, and is used in US
National Labs, research organizations, and supercomputing centers. Tens of millions of
dollars of labor have been invested in the system from commercial entities, government
funding, and the open-source community. It is used for a diverse set of applications,
including volume rendering, medical imaging (http://www.slicer.org), visualization

(http://www.paraview.org), and many, many more.

How ActiViz .NET Differs from VTK

VTK is an open-source system written in C++ that you can download and use for free.
However, using VTK requires significant C++ developer skills, and VTK does not easily
integrate into the Microsoft development environment. ActiViz .NET provides the
appropriate integration layer so that VTK seamlessly fits into the .NET framework. This
means that you can use languages such as C# and Visual Basic to add powerful 3D

43
43
43
43
43
45
45

http://www.kitware.com/products/volview.html)

visualization capabilities to your own applications. This integration layer provides the
benefits of the .NET layer including on-line documentation and intelligent coding.

ActiViz interfaces with many existing applications and frameworks written in C#,
including WindowsForm, Windows Presentation Foundation (WPF), WinUI 3, Avalonia,
and the Unity software. This enables a seamless and fast integration of advanced
algorithms and rendering techniques in various environments, Windows, Linux and
MacOS.

1.4. Licensing

While VTK is under the BSD 3-Clause License, ActiViz is proprietary and has its own
license that allows you to redistribute Activiz as part of your commercial application
without having to purchase additional licenses for the end-user.

Read the ActiViz license agreement or contact us for more information.

2. Getting ActiViz .NET

Request a trial version of ActiViz .NET here: https://www.kitware.eu/product/activiz
You can find details about the latest version of ActiViz and its pricing at this link :
https://www.kitware.eu/get-activiz.

Notes:
The latest “Open-Source” version available is ActiViz .NET 5.8.0.
The latest “Supported” version available is ActiViz .NET 9.5.

3. Installing ActiViz .NET

This section describes how to download and install ActiViz .NET, and how to configure
Microsoft Visual Studio to use ActiViz .NET on Windows.

Packages for Linux and MacOS are provided as archives. They can be made available locally
to NuGet command-line tools after installing dotnet. Please refer to the Command line
section.

Please refer to the Microsoft documentation for dotnet installation instructions for your
system https://dotnet.microsoft.com/en-us/download.

3.1. System Requirements
ActiViz NET runs on Windows 10 to Windows 11, GNU Linux and OSX 13+.

While VTK itself can run on small to large computers, it is a sophisticated, powerful

https://www.kitware.eu/wp-content/uploads/2022/01/ActiViz-License-Agreement.pdf
https://www.kitware.eu/contact/
https://www.kitware.eu/product/activiz
https://www.kitware.eu/get-activiz
https://dotnet.microsoft.com/en-us/download

system that requires adequate computing resources. We advise using hardware with a
dedicated graphics card.

3.2. Installation With Installer (Windows)

Once you have downloaded the appropriate installer, open it and follow the instructions.
The installation process proceeds as follows.

e First, you will see the welcome splash screen. Choose “Next>" and proceed to the
next step.

“% ActiViz.NET 9.0.1 Supported Edition Setup - X

Welcome to ActiViz.NET 9.0.1
Supported Edition Setup

Setup will guide you through the installation of ActiViz.NET
9.0.1 Supported Edition.

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue.

e Next, please review the license agreement and agree to its terms.

“% ActiViz.NET 9.0.1 Supported Edition Setup - X

“ I License Agreement
v ACtIVIZ NET Please review the license terms before installing ActiViz.NET 9.0.1
Supported Edition.

Press Page Down to see the rest of the agreement.

lctiViz .NET Supported Edition A

Copyright (c) 2019 Kitware SAS & Kitware Inc.
All rights reserved.

Redistribution and use in source with or without
modification, are permitted provided that the following conditions are met:

*Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install ActiViz.NET 9.0. 1 Supported Edition.

<Back Cancel

e Indicate where on your computer you would like to install the software. For the
purposes of this User’s Guide, the installation location is in C:\Program Files
(x86)\ActiViz.NET 9.3 Supported Edition. (Note that administrative privileges are
required to install ActiViz in the “Program Files” directory. However, you should
install the software anywhere on the system.) Choose “Next” and proceed with the
installation.

“% ActiViz.NET 9.0.1 Supported Edition Setup = X
h . Choose Install Location
v ACtIVIZ .NET Choose the folder in which to install ActiViz.NET 9.0. 1 Supported
Edition.

Setup will install ActiViz.NET 9.0. 1 Supported Edition in the following folder. To install in a
different folder, dick Browse and select another folder. Click Next to continue.

Destination Folder

:\Program Files (x86)\ActiViz.NET 9.0. 1 Supported Edition Browse...

Space required: 120.2 MB
Space available: 171.4GB

cac

e You will also need to indicate where to place the installation on your Start Menu
Folder.

“% ActiViz.NET 9.0.1 Supported Edition Setup - X

“ . Choose Start Menu Folder
v ACtIVIZ .NET Cchoose a Start Menu folder for the ActiViz.NET 9.0.1 Supported
Edition shortcuts.

Select the Start Menu folder in which you would like to create the program's shortcuts. You
can also enter a name to create a new folder.

[Jctiviz.NET 9.0.1 Supported Edition

ActiViz.NET 6.3.0 Supported Edition A
ActiViz.NET 6.3.0 Supported Edition (Win&4)

ActiViz.NET 7.0.0 Supported Edition (Win64)

ActiViz.NET 7.1.0 Supported Edition (Win64)

ActiViz.NET 8.0.0 Supported Edition

ActiViz.NET 8.0.0 Supported Edition (Win64)

ActiViz.NET 8.1.0 Supported Edition (Win64)

[Joo not create shortcuts
Mullsoft Install System v3.04

< Back ‘ Install Cancel

e Once you select “Install” the software installation process begins as illustrated below.
It should take less than a minute.

“% ActiViz.NET 9.0.1 Supported Edition Setup -

h I Installing
~2 ACtIVIZ .NET Please wait while Activiz.NET 5.0. 1 Supported Edition is being
installed.

Extract: Kitware.VTK.CommonCore.Unmanaged.dll

Nullsoft Install System v3.04

< Back Next > Cancel

e That’s it, you have successfully installed ActiViz .NET on your computer.

“% ActiViz.NET 9.0.1 Supported Edition Setup -

Completing ActiViz.NET 9.0.1
Supported Edition Setup

ActiViz.NET 9.0. 1 Supported Edition has been installed on
your computer.

Click Finish to dose Setup.

3.3. Installation With NuGet

Activiz Nuget packages of the latest Supported Version targeting .NET Core are provided
with the installer (Windows) and archives (Linux and Mac).

To install and use Activiz in .NET Core projects, you must provide nuget with the location
of the packages that come with the installer. This can be achieved by adding the “package”
directory, located in your Activiz installation folder, to the local nuget package feed.
Visual Studio

To do so, first install Activiz with the installer, then proceed with the following steps in
Visual Studio:
e Right-click on your project
e Select “Manage NuGet Packages”
e Click the Package Source Settings wheel in the upper right corner of the Nuget
Package Manager

NuGet: 4 X

SuoNedIION

Browse Installed Updates NuGet Package Manager:

Search (Ctrl+L) P~ C; Include prerelease Package source: fo

No packages found

Each package is licensed to you by its owner. NuGet
is not responsible for, nor does it grant any licenses
to, third-party packages.

l:‘ Do not show this again

o Add a new package source using the “+” icon, and update the Source path to include
the location of your Activiz nuget packages

Options ? X

Search Options (Ctrl+E) P Package sources: X ¢ ¢

> Debugging ~ nuget.org

b Performance Tools https://api.nuget.org/v3/index.json

> CMake [Microsoft Visual Studio Offline Packages

I Cross Platform C:\Program Files (x86)\Microsoft SDKs\NuGetPackages\
b Database Tools Package source

b F# Tools C:\Program Files (x86)\ActiViz.NET 9.0.1 Supported Edition\package
P> Graphics Diagnostics

P IntelliCode

I Live Share

4NuGet Package Manager
General

Package Sources
P Test
> Test Adapter for Google Test
> Text Templating
> Web Forms Designer

> Web Performance Test Tools
Name: Package source ‘

>Windows Forms Designer
> XAML Designer v

e The new package source appears in the list and allows for browsing local packages.
You can now install Kitware.VTK and start using Activiz.

Browse Installed Updates NuGet Package Manager:

Search (Ctrl+L) P~ O Include prerelease Package source: 33

All

nuget.org

. . Version: |Latest stable 9.0.1
Kitware.mummy.Runtime by v1.04 Package source

Package Description
@ Options

'B Kitware.VTK by Kitware.vTK v9.0.1

Description

Command line

On any system, one can add a package source using the following command:

dotnet nuget add source .../ActiViz/package

After this has been called, dotnet will be able to automatically find ActiViz NuGet packages when
building a project that depends on Kitware.VTK package.

To build and run a project, use the following command from the directory containing the “csproj” file:
dotnet run

3.4. ActiViz Control in Visual Studio

ActiViz .NET provides a user control to integrate VTK advanced rendering into your
application GUI.

In recent versions of Activiz, the RenderWindowControl provided in the Kitware.VTK
assembly should be automatically detected and added to the VisualStudio Designer
ToolBox when adding a reference to Activiz in your project. (See next section for more
information on how to add references)

The RenderWindowControl can be used when designing applications.

If the RenderWindowControl is not available by default in the Designer ToolBox, you
may need to configure Visual Studio as follows.

First, choose “Tools” from the menu bar and select | Tools | Extensions Window Help Search (Ctrl+(

“Choose Toolbox Items” as shown in the figure. A Get Tools and Features...
popup will appear. fi Connect to Database...
"= Connect to Server...

[.] Code Snippets Manager... Ctrl+K, Ctrl+B
Choose Toolbox Items...
NuGet Package Manager »
Create GUID
Error Lookup
Spy++
External Tools...
Command Line 4
Import and Export Settings...

Customize...

‘ﬁ Options...

Choose Toolbox ltems

.NET Framework Components

COM Components

Universal Windows Components | WPF Components

NRRKORKRKROOORX

Name «
AccessDataSource
ADODC
ADODCArray
AdRotator
AdRotator

AppearanceEditorPart

Assemblylnstaller
BackgroundWorker
BehaviorEditorPart

BindingNavigator

Namespace

System.Web.Ul.WebControls
Microsoft.VisualBasic.Compatibility.VB6
Microsoft.VisualBasic.Compatibility.VB6
System.Web.Ul.MobileControls
System.Web.Ul.WebControls
System.Web.Ul.WebControls.WebParts
System.Configuration.Install
System.ComponentModel
System.Web.Ul.WebControls.WebParts

System.Windows.Forms

Assembly Name

System.Web
Microsoft.VisualBasic.Compatibility.Data
Microsoft.VisualBasic.Compatibility.Data
System.Web.Mobile

System.Web

System.Web
System.Configuration.Install

System

System.Web

System.Windows.Forms

Filter: Clear
AccessDataSource
,@_I Language: Invariant Language (Invariant Country)

Version: 4.0.0.0

‘ oK H Cancel H Reset ‘

You will need to browse for .NET Framework Components by selecting “Browse” to
search in the ActiViz bin directory (e.g., C:\Program Files\ActiViz.NET 9.5 Supported
Edition x64\bin). The following selection will appear:

Open X
« v 4 « ActiViz.NET 9.0.1 Supported Edition x86 > bin v U Search bin P
Organise ~ New folder =- M 0

" Name Date modified Type Size "
s L9 NIWEGIT. ¥ 1 A I I Sy UG LA GHaY S | 11 Ve et 19,00 AU AL 5 o
% Kitware.VTK.CommonTransforms.Unman... 11/02/2021 13:59 Application extens... 49

\j Kitware VTK.dII 11/02/2021 14:02 Application extens... 9,568
e Kitware.VTK.DomainsChemistry.Unmana... 11/02/2021 14:00 Application extens... 38
P2 Kitware.VTK.FiltersAMR.Unmanaged.dll 11/02/2021 13:59 Application extens... 23
k2 Kitware.VTK.FiltersCore.Unmanaged.dll 11/02/2021 14:01 Application extens... 279
e Kitware.VTK FiltersExtraction.Unmanaged... 11/02/2021 13:59 Application extens... 72 v
v < >
File name: |Kitware.VTK.dII V‘ Executables (*.dll; *.exe) v

Select the Kitware.VTK.dll assembly. This will make the ActiViz control available in

your toolbox when designing WindowsForm applications.

4. Using ActiViz .NET

4.1. Activiz .NET Core Nuget Package (Recommended)

Starting at version 9.1, nuget packages of ActiViz are provided for .NET Core applications.
The following target frameworks are available within the package:

- net9

- net9-windows (For WindowsForm and WPF support)

To start using Activiz in .NET Core applications, follow both the installation instructions of
sections Installation With Installer and Installation With Nuget.

4.2. ActiViz .NET Framework Reference

The first step to use ActiViz in your project is to add a reference to ActiViz libraries. For
this, right click on your project in the Solution Explorer, and choose “Add Reference”. This
will bring up a dialog, at which point you will “Browse” to the ActiViz .NET install
location C:\Program Files\ActiViz.NET 9.5 Supported Edition x64\bin (or appropriate).
Then choose the two assemblies as shown in the figure below:

o “Kitware.mummy.Runtime.dll”
o “Kitware.VTK.dII".

N N Select the files to reference...
131 Solution 'Example’ (1 of 1 project)
4 Example « v 1 “ ActiViz.NET 9.0.1 Supported Edition x86 > bin v O Search bin »r
4 }' Properties _ -
b =B Reference Organise ~ New folder =- 1 0
@ app.confi /3l Fefarznes . " Name Date modified Type Size
b Example.(Add Service Reference... * UL LU v e 1i.er APPILauUUI SALET S, 40 ND
t¢) Add Connected Service Kitware.mummy.Runtime.dll 11/02/2021 13:55 Application extens... 20 KB
| Kitware.mummy.Runtime.Unmanaged.dll 11/02/2021 13:55 Application extens... 94 KB
Add Analyzer...
Kitware.VTK.ChartsCore.Unmanaged.dll 11/02/2021 13:59 Application extens... 135 KB
ey NHEE: (R s Kitware.VTK.CommonColor.Unmanaged.... 11/02/2021 13:58 Application extens. 24 KB
Scope to This | Kitware. VTK.CommonComputationalGeo... ~ 11/02/2021 13:58 Application extens. 52 KB
New Solution Explorer View Kitware.VTK.CommonCore.Unmanaged.dll ~ 11/02/2021 14:00 Application extens... 282 KB
. | Kitware.VTK.CommonDataModel.Unman... ~ 11/02/2021 14:02 Application extens... 606 KB
Solution Explorer Paste Ctrl+V
Kitware.VTK.CommonExecutionModel.U... ~ 11/02/2021 13:59 Application extens... 161 KB
Kitware VTK.CommonMath.Unmanaged.... 11/02/2021 13:59 Application extens. 33 KB
| Kitware.VTK.CommonMisc.Unmanaged.dll 11/02/2021 13:58 Application extens. 23 KB
“| Kitware.VTK.CommonSystem.Unmanage... ~ 11/02/2021 13:58 Application extens... 21KB
| Kitware.VTK.CommonTransforms.Unman... ~ 11/02/2021 13:59 Application extens... 49 KB
D< Kitware.VTK.dII 11/02/2021 14:02 Application extens... 9,568 KB
v Kitware V/TK DamainsChamistry [Inmana 11/02/2021 14:00 Annlication extens 3R KR
File name: |"Kitware.VTK.dIl" "Kitware.mummy.Runtime.dll" ~ |Component Files (*.dll;*.tlb;*.olk ~
Add Cancel

4.3. A Ridiculously Brief Overview of VTK

We begin with a brief introduction of VTK. Though VTK is a large and complex
software system, knowledge of its conceptual framework will greatly assist you in
understanding the following examples.

First, VTK is an object-oriented system. The practical realization of this design is that
objects are instantiated and then combined in a variety of patterns to form applications.
Each class represents a focused piece of functionality. The instances (or objects) of these
classes are manipulated by invoking methods upon them.

Second, VTK is a data-centric toolkit manifesting a data-flow pipeline. The so-called
visualization pipeline is created by connecting algorithms (also called process objects)
together. Behind the scenes, the algorithms exchange data objects between themselves
across the pipeline. For example, a pipeline can be created that reads polygonal data,
decimates the data, smooths it, and then passes it on to VIK’s rendering subsystem.
Practically the purpose of the visualization pipeline is to transform data into rendering
primitives which are eventually displayed through VTK’s graphics subsystem; although
in some cases VIK may just be used as a data processing engine—loading data,
processing it, and writing it back to disk.

The graphics subsystem is used to display data of various forms including polygonal data
and volumes (i.e., regularly sampled data). The rendering system consists of the
following key objects that are combined into a scene to produce the final 3D display.

e vtkActor and vtkProp — the objects to be rendered that appear in the scene. In
general, we refer to these objects as “actors” although vtkActor is in fact a subclass
of vtkProp (like the “props” found on stage).

o vtkCamera — the object used to project the actors from 3D space into a 2D image.

e vtkLight — used to illuminate the scene.

e vtkProperty — used to apply material (i.e., lighting) properties to actors.

e vtkRenderer — this is the object where the rendered image is shown.

e vtkRenderWindow — one or more renderers can be combined into a render
window.

This organization of objects is consistent with the “lights, cameras, actors” conceptual
model that is familiar to many of us from the movie/video making business. Note that
many other objects are present behind the scenes such as transformation matrices
(vtkTransform), interactors (process mouse and keyboard events), and texture maps
(vtkTexture). Note that when building Form Applications, ActiViz .NET system
combines the vtkRenderer and vtkRenderWindow into a single class called the
“RenderWindowControl”. This is the form that is created in ActiViz applications and
embedded into the .NET program.

One important note: the vtkRenderWindowlnteractor class is the keystone class for
managing mouse and keyboard events in the render window. Through interactor styles
(subclasses of vtkInteractorObserver) it is possible to customize the interaction behavior.
By default, the interactor supports the following bindings:

e left mouse — rotate camera
e middle mouse — translate camera

e right mouse — zoom in/out

e keypress j — enter joystick mode (mouse down causes continuous camera motion),
exits trackball mode

e keypress t — enter trackball mode (mouse down plus motion causes camera motion),
exits joystick mode

e keypress f — press this key when over an actor (a pick is performed behind the
scenes); the camera focal point is set to the picked position and the camera flies
towards the point.

e keypress w — the actors are shown in wireframe

e keypress s — the actors are shown as surfaces

e keypress r — reset the camera so that all visible actors appear in the scene.

The examples that follow in this section all implement these mouse and keyboard
bindings.

Besides the basic classes described here, there are hundreds more classes that implement
key functionality for the VTK system. This includes filters for processing data,
interaction widgets for direct manipulation of data, image processing, volume rendering,
information visualization, mathematics, and computational geometry (to name just a
few). The following examples demonstrate a variety of ways in which VTK can be used,
and how to use VTK in the .NET framework.

4.4. Hello VTK - Console Application

In the first example we will create a console application. Create a new Visual Studio
project and choose the Console application template.

Create a new
. Search for templates (Alt+S) P~ a I
project

< i Windows " -

BC" Console App (.NET Core)

9 WPF App (NET) cu A project for creating a command-line application that can run on .NET Core on
Windows, Linux and MacOS.

Recent project templates

Windows Forms C#

Linux macOS Windows Console
T App (NET cx
Framework) ﬁ' Console App (.NET Framework)
. Console App (NET A project for creating a command-line application
- | c#
Core) C# Windows Console
= Blank App (Universal
Cit
Y Windows)
« Windows Forms Not finding what you're looking for?
= App (NET) o Install more tools and features
o« DLL (Universal
.
C
2 Windows) o
Blank App

Back Next

Open the created project and add the required references to ActiViz depending on your .NET
version, by following the instruction in Using Activiz .NET.

Now it’s simply a matter of adding in the appropriate references and writing some VTK
code. In this example we will use C#. (Please read the short introduction to VTK to help
clarify some of the concepts.) To add in references, make sure that the line “using
Kitware.VTK;” (highlighted below) is added to your application.

using System;
using System.Collections.Generic;
using System.Text;

using Kitware.VTK;

namespace HelloVTK

{
class Program
{

static void Main(string[] args)
{
// add code here
}

}

Next, insert the appropriate VTK code into the Main() function as exemplified by the
following.

public static void Main(String[] argv)

{
// Create a simple sphere. A pipeline is created.
sphere = vtkSphereSource.New(); sphere.SetThetaResolution(8);
sphere.SetPhiResolution (16) ;

shrink = vtkShrinkPolyData.New () ;
shrink.SetInputConnection (sphere.GetOutputPort());
shrink.SetShrinkFactor (0.9);

mapper = vtkPolyDataMapper.New () ;
mapper.SetInputConnection (shrink.GetOutputPort());

// The actor links the data pipeline to the rendering subsystem
actor = vtkActor.New();
actor.SetMapper (mapper); actor.GetProperty () .SetColor(l,0,0);

// Create components of the rendering subsystem
//

renl = vtkRenderer.New () ;

renWin = vtkRenderWindow.New () ;
renWin.AddRenderer (renl) ;

iren = vtkRenderWindowInteractor.New () ;
iren.SetRenderWindow (renWin) ;

// Add the actors to the renderer, set the window size
//

renl.AddViewProp (actor) ;

renWin.SetSize (250,250);

renWin.Render () ;

camera = renl.GetActiveCamera () ;

camera.zoom(1l.5);

// render the image and start the event loop

//

renWin.Render () ; i Visualization Toolkit - Win320penGL #1 - o x
iren.Initialize();
iren.Start();

deleteAllVTKObjects () ;
}

static vtkSphereSource sphere;

static vtkShrinkPolyData shrink;
static vtkPolyDataMapper mapper;
static vtkActor actor;

static vtkRenderer renl;

static vtkRenderWindow renWin;

static vtkRenderWindowInteractor iren;
static vtkCamera camera;

///<summary>Deletes all static objects created</summary> public static
void deleteAllVTKObjects ()
{

//clean up vtk objects

if (sphere != null) { sphere.Dispose(); }
if (shrink != null) { shrink.Dispose(); }
if (mapper != null) { mapper.Dispose(); }
if (actor != null) { actor.Dispose(); }
if (renl != null) { renl.Dispose(); }

if (renWin != null) { renWin.Dispose(); }
if (iren != null) { iren.Dispose(); }

if (camera != null) { camera.Dispose(); }

}

Compiling and running the C# program yields the red sphere above. (Note that some
interaction with the camera was performed to move the camera into the position shown.)

In this example, a simple pipeline is implemented that generates some polygonal data (the
sphere source); shrinks the polygons towards their center (the shrink filter), and then
maps the data (e.g., polygons) to the graphics library. Since no lights and cameras are
manually created, they are automatically created. Also, the vtkRenderWindowInteractor
is used to control mouse and keyboard events in the window. Note: calling iren.Start() in
the example runs a Windows message loop. To exit the message loop, and hence the
application, simply close the window.

4.5. Hello VTK - Windows Form Application
To create a Windows Form Application (shown here in C#), select “Create a new project”
from the Visual Studio start menu. Select the Windows Forms App template for either the
NET Framework or .NET Core, and fill the project information.

Create a new
. Search for templates (Alt+S) P~ Cl Il
project

Ci# ¢ Windows ¢ Desktop ¢
Recent project templates

Lc’i Windows Forms App (.NET Framework)

55 wer App (NET) c# A project for creating an application with a Windows Forms (WinForms) user
interface
Windows Forms
T App (NET c#
Framework)

C# Windows Desktop

|-Cj‘ WPF App (.NET Framework)
<>

B Console App (NET Windows Presentation Foundation client application

C#
Core)

C# XAML Windows Desktop

< Blank App (Universal
C#
Windows) C [=] WPF App (NET)

<®>="" Windows Presentation Foundation client application

= Windows Forms

App (NET) C# C# XAML Windows Desktop
B C# o
& DLL (Universal Qi! WPF Custom Control Library (NET)
LT Co+ as))) '
indows) Windows Presentation Foundation custom control library

Blank App C# XAML Windows Desktop Library

Open the created project and add the required references to ActiViz depending on your .NET
version, by following the instruction in Using Activiz .NET.

Next, go to the View Menu and make sure the Toolbox is visible.

Under the General category in the toolbox, the RenderWindowControl will appear. To

add the control to your application, select the RenderWindowControl and place it into the
form as shown in the figure below.

Note: The integration of the ActiViz control in your application can be done

programmatically. This can be necessary if the control is not in the ToolBox (see the part
ActiViz Control in Visual Studio for more details).

o File

Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl+Q)

?(\J\'F)-HH““‘ < v‘Debug'><86 'PStart"bi‘;E_‘—‘::ﬁ:\nf

Toolbox

J1910|dx3 19MI9S

Contai

> Menus & Toolbars

> Data
Comp

> Printing
> Dialogs
I" WPF Interoperability

4 Gener:

L3

Search Toolbox P~
> All Windows Forms & Hello VTK
Common Controls 0

v 1 X B Formi.cs [Design] + X [elIEeglCVEC

Hel...Form -

O

X

‘ i “ = N | Live Share &

~ # Solution Explorer

iners

onents

al

Pointer /

RenderWindowControl —

RenderWindowControl
Version 9.0.0.1009 from Kitware SAS
.NET Component

Output

Show output from:

Error List eltjield Find Symbol Results

4

<

[HelloVTKForm
> M Properties
D = References
> [Forml.cs
b c* Program.cs

Solution Explorer [MEEIESIleICN

Properties

AccessibleDescri
AccessibleName
AccessibleRole Default

= Appearance
BackColor ___ Control
Backgroundlmagi (none)
BackgroundimacTile
BorderStyle None

Accessibility

Next, double click on the RenderWindowControl to bring up the C# code:

using
using
using
using
using
using
using

names

{

p
{

System;
System.Collections.Generic;
System.ComponentModel;
System.Data;
System.Drawing;
System.Text;
System.Windows.Forms;

pace HelloVTK
ublic partial class Forml : Form

public Forml ()
{

InitializeComponent () ;

private void
renderWindowControll Load(object sender,
{
//add code here
}

EventArgs

A Add to Source Control

IO

Search Solution Explorer (Ctrl+$)

pv

37 Solution 'HelloVTKForm' (1 of 2 proje

2

suonesyioN

As in the Console Application, code can now be inserted into the skeleton application.
Make sure that “using Kitware.VTK;” is added, and add references to the solution.
Finally, note that the control provides some convenience methods for accessing the
renderer and render window, and builds in a render window interactor. Here is what the
code looks like, and the image that results from running the application:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

85 Hello VTK - [m] X

using Kitware.VTK;

namespace HelloVTK

{

public partial class Forml : Form

{

public Forml ()

{

InitializeComponent () ;

private void
renderWindowControll Load(object sender, EventArgs e)

{
// Create a simple sphere. A pipeline is created.
vtkSphereSource sphere = vtkSphereSource.New () ;
sphere.SetThetaResolution (8) ;
sphere.SetPhiResolution (16) ;

vtkShrinkPolyData shrink = vtkShrinkPolyData.New();
shrink.SetInputConnection (sphere.GetOutputPort());
shrink.SetShrinkFactor (0.9);

vtkPolyDataMapper mapper = vtkPolyDataMapper.New() ;
mapper.SetInputConnection (shrink.GetOutputPort());

// Link the data pipeline to the rendering subsystem
vtkActor actor = vtkActor.New();

actor.SetMapper (mapper) ;
actor.GetProperty () .SetColor (1, 0, 0);

// Create components of the rendering subsystem

//

vtkRenderer renl = renderWindowControll.RenderWindow.
GetRenderers () .GetFirstRenderer () ;

vtkRenderWindow renWin = renderWindowControll.RenderWindow;

// Add the actors to the renderer, set the window size

//

renl.AddViewProp (actor) ;
renWin.SetSize (250,250);
renWin.Render () ;

vtkCamera camera = renl.GetActiveCamera () ;

camera.zoom((double)l.5);

Note that the RenderWindowControls has an important
property that aid in debugging. If the property
AddTestActors is set to “True” then running the
application results in an image similar to the one shown
to the right. An extra cones is inserted into the VTK
scene. This property addresses the frustrating blank
image problem that can occur when the VTK pipeline is
configured incorrectly, or the application is executing
improperly.

8- Hello VTK

4.6.

Hello VTK - WPF Application

To create a Windows Presentation Foundation application, select “Create a new project”
from the Visual Studio start menu. You can use ActiViz in both WPF applications for the

NET Framework and for .NET Core. Select the WPF App template you prefer and
choose the project name and location.

Create a new
project

Recent project templates

Windows Forms
T App (NET
Framework)

B Console App (NET
Core)

C3 WPF App (NET)

< Blank App (Universal
Windows)

7

 Windows Forms
- App (NET)

DLL (Universal

_—
Bl Windows)

Blank App

Search for templates (Alt+S) P~

C#

Cc#

]

C#

<m>

.
ui
<H>

«*
i |

v Windows v

C# Windows Desktop

WPF App (.NET Framework)

Windows Presentation Foundation client application

C# XAML Windows Desktop

WPF App (NET)

Windows Presentation Foundation client application

C# XAML Windows Desktop

WPF Custom Control Library (NET)

Windows Presentation Foundation custom control library
C# XAML

Windows Desktop Library

WPF User Control Library (.NET)

Windows Presentation Foundation user control library

Clear all

Desktop v

Back Next

ActiViz render control relies on WPF-WindowsForm interop to run in a WPF application.
We use the WindowsFormHost component to provide a compatible area for the

RenderWindowControl.

A few limitations to this approach mainly prevent the control from being rotated or causes
air-space issues when having overlapping elements. This has generally no impact in the

application design.

Open the toolbox and add a WindowsFormHost XAML component in your main page:

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-and-windows-forms-interoperation?view=netframeworkdesktop-4.8#layout-support

M File Edit View Git Project Build Debug Design Format Test Analyze Tools Extensions Window Help Search (Ctrl+Q) P Hel...WPF - a X

f@ -0 B -2 M| - - Debug - x86 - > HellovTkwpF - | 57 | @ & b (- | | S 12 Liveshare &

MainWindow.xaml & X [eldEag:IENEEg ~ # Solution Explorer

J1a10|dx3 19n18S
suonesynoN

Rectangle Search Solution Explorer (Ctrl+$)

RichTextBox] Solution 'HelloVTKWPF' (1 of 1 project)
ScrollBar 4 HelloVTKWPF
b & Dependencies

Bd o= 13 O ¢

ScrollViewer
b & App.xaml.cs

=
Gl

Separator
Slider
StackPanel

> I3 MainWindow.xaml

StatusBar
TabControl

TextBlock 49.54% ~| ¢ fx|mp/a @ - B4
GDesign 1t/ @xamL &
© WindowsFogfeHost - | B windowsFormsHost
= ghfindow x:Class="HelloVTKWPF .Mainkindow"
ToolBarPanel xmlns="http://schemas.microsoft.con/winfx/2086/xaml/presentation”
xilnsix="http://schemas.microsoft. com/winfx/2006/xanl"
ToolBarTray xmlns:d="http: //schemas.microsoft.com/expression/blend/2008"
TreeView xmlnsimc="http://schemas .openxmlformats . org/markup-compatibility/2006"

S32IN0S Bje SUIINO JUSWN20Q

TextBox

ToolBar

Viewbox mc:Ignorable="d"
Title="MainWindow" Height="350" Width="525">
B <Grid>
WindowsFormsHost = <WindowsFormsHost Grid.Column="@" Grid.RowSpan="1" Name="wfh">

T </WindowsFormsHost>
= WrapPanel WindowsFormsHost </Grid>
e [</window>

WebBrowser

o—
59
]
[}
oF
&
2
i

4

[a]

There are no usable N @ No issues found

Output

Show output from: Build
Build started...
4

Error List [feiismg Find Symbol Results Solution Explorer [CENStIs

A Add to Source Control « !1

Add the required references to ActiViz depending on your .NET version by following the
instruction in Using Activiz NET.

Edit the MainWindow.xaml description to add the ActiViz .NET RenderWindowControl in
the WindowsFormHost component. Make sure the namespace containing the control
matches the one in the xmlns definitions.

Fl<Window x:Class="HelloVTKWPF.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:vtk="clr-namespace:Kitware.VTK;assembly=Kitware.VTK"
mc:Ignorable="d"

Title="MainWindow" Height="350" Width="525">

@ <Grid>
[= <WindowsFormsHost Grid.Column="@" Grid.RowSpan="1" Name="wfh">
<vtk:RenderWindowControl x:Name="_renderControl” Load="Form_Loaded" />
</WindowsFormsHost>
</Grid>
| </Window>

An event handler is added to the Load event of the RenderWindowControl. This will be used
to initialize the VTK scene.

Properties and Events of the selected element can be easily edited in the Properties window by
clicking the xaml line of the element.

Properties v B X B MainWindow - o X

Name | _renderControl | yaRZ

O
Type RenderWindowControl

KeyDown |

KeyPress

KeyUp

Layout

Load Form_Loaded

LocationChanged

Leave |

LostFocus

Edit the MainWindow.xaml.cs code to initialize the scene in the event callback we just added:
using System;
using System.Windows;
using Kitware.VTK;

namespace HelloVTKWPFEF
{
public partial class MainWindow : Window
{
public MainWindow ()
{

InitializeComponent () ;

private void Form Loaded(object sender, EventArgs e)
{
// Create a simple cube. A pipeline is created.
vtkCubeSource cube = vtkCubeSource.New() ;

vtkPolyDataMapper mapper = vtkPolyDataMapper.New () ;
mapper.SetInputConnection (cube.GetOutputPort()) ;

// The actor links the data pipeline to the rendering subsystem
vtkActor actor = vtkActor.New/();
actor.SetMapper (mapper) ;

// Create components of the rendering subsystem

vtkRenderer renderer =
_renderControl.RenderWindow.GetRenderers () .GetFirstRenderer () ;

renderer.SetBackground (.2, .3, .4);

// Add the actors to the renderer
renderer.AddActor (actor) ;

4.7. Hello VTK - Avalonia Application
To create an Avalonia application, install the Avalonia templates using the following
command: dotnet new install Avalonia.Templates.
Then, select “Create a new project” from the Visual Studio start menu. Select the
Avalonia App template you prefer and choose the project name and location.

Create a new project

Search for templates (Alt+5) P~ Clear all
Recent project temp|ates cz - All platforms - Avalonia
Avalonia NET App (Avaloniall)
=i . .
&1 Blank App (Universal Windows) = o A cross-platform Avalenia Ul Application targeting Desktop
_
B Console App s G Avalonia Desktop Linux mac0s ‘Windows
HAML
B Console App Ce= o Avalonia .MET MVVM App (Avalonial)l)
A cross-platform Avalonia Ul Application using the MVVIM pattern targeting
&1 CMake Project G+ Desktop
c# Avalonia Desktop Linux mac0s Windows
3 Empty Project Ce= XAML
§% Android Application = o Avalonia Cross Platform Application (Avaloniall)
A cross-platform Avalonia Ul Application using the MVVM pattern targeting
Desktop, Mobile and Browser with WebAssembly
¥ Android App (Xamarin) c#
c# Avalonia Desktop Mobile Web XAML
Fi Mobile App (Xamarin.Forms) cE
BB NETMAUI App o Mot finding what you're looking far?
Install mare tools and features
Back Mext

Once the solution is loaded, add the required Kitware.AvaloniaControls nuget package to the
list of dependencies by following the instruction in Using Activiz .NET Core Nuget
Package. The Kitware.VTK and Kitware.mummy.Runtime packages are automatically
added to the project as a dependency of Kitware.AvaloniaControls.

To add the ActiViz RenderWindowControl to the application window, open the
MainWindow.axaml file, and edit the xml to define the vtk namespace and add the control to
the window as highlighted below:

—l<Window xmlns="https://github.com/avaloniaui®
xmlns :x=" o ema i
xmlns :d="
xmlns: i : penx a z ;i
I xmlns:vtk="clr—-namespace:Hitware.AvaloniaControls;assembly=Hitware.AvaloniaControls"
xmlns:ctrl-pages="clr-namespace:ControlCatalog.Pages"
mc:Ignorable="d" d:DesignWidth="808" d:DesignHeight="450"
x:Class="HelloVTKAvalonia.MainWindow"
Title="HelloVTHAvalonia"=

=] @ N = b R

I <vtk:RenderWindowControl Name="VTKControl"/=

=
W hd @ O @

| | </window=

An event handler is then added to the AttachedToVisualTree event of the
RenderWindowControl. This will be used to initialize the VTK scene.

Edit the MainWindow.xaml.cs code as follows to add the AttachedToVisualTree event handler
and initialize the scene in the corresponding callback:

using Avalonia.Controls;

using Avalonia.Markup.Xaml;
using Kitware.AvaloniaControls;
using Kitware.VTK;

using System;

namespace HelloVTKAvalonia

{
public partial class MainWindow : Window
{
public MainWindow ()
{
InitializeComponent () ;
}
private void InitializeComponent ()
{
AvaloniaXamlLoader.Load (this) ;
RenderWindowControl ctrl = this.FindControl<RenderWindowControl> ("VTKControl");
if (ctrl != null)
{
ctrl.AttachedToVisualTree += InitVTKScene;
}
}
public void InitVTKScene (object? sender, EventArgs args)
{
RenderWindowControl? mainView = sender as RenderWindowControl;
vtkRenderer renderer = vtkRenderer.New();
renderer.SetBackgroundAlpha (1.0) ;
mainView.RenderWindow.AddRenderer (renderer) ;
vtkInteractorStyleTrackballCamera interactorStyle = vtkInteractorStyleTrackballCamera.New();
renderWindow.GetInteractor () .SetInteractorStyle (interactorStyle);
vtkSphereSource src = vtkSphereSource.New();
vtkPolyDataMapper mapper = vtkPolyDataMapper.New() ;
mapper.SetInputConnection (src.GetOutputPort());
vtkActor actor = vtkActor.New();
actor.SetMapper (mapper) ;
renderer.AddActor (actor) ;
}
}

4.8. VTK events and observers

Activiz supports VTK objects events observers, but in an higher-level form based on C#
delegates and events.

vtkCommand and vtkCallbackCommand must not be used in ActiViz, they won’t work.
Instead, ActiViz provides the following API:

object.<EventName>Evt += callback; // add observer
object.<EventName>Evt -= callback; // remove observer

EventName is one of vtkCommand event names, the “Event” at the end is replaced with “Evt”
to prevent name conflict, so if you want to hook on the “ModifiedEvent”, use the
“ModifiedEvt” delegate.

The signature of all delegates is void(vtkObject sender, vtkObjectEventArgs e).
sender is the object on which you have added the delegate, you may use
vtk<Type>.SafeDownCast(sender) to get the object back from the delegate directly.
This is especially useful if you connect the same function to multiple delegates.

e can be used to retrieve the optional user data sent by some events. Please refer to
vtkCommand documentation for more information.

It is possible to use lambda functions as observer:
object.ModifiedEvt += (sender, e) => { ... };

To receive keyboard and mouse events information, you may use observers on a
vtkRenderWindowInteractor oronavtkInteractorStyle.

Adding an observer to a vtkRenderWindowInteractor enables passive event watching,
meaning that you will receive the event but won’t block it.

Adding an observer to a vtkInteractorStyle will override the interactor style default
handler for the given interaction. If you want to do something before the default behavior of
the interactor style, you can add an observer on it, then call sender.0On<Event> to let
default behavior flow.

Custom interactions
-
Left button Press —
Invoke

LeftButtonPressEven!

Interactor

Interactor Style

HasObserver ?

Yi/ NO‘
Observing the interactor just catches the

Observing the interactor style prevents the ~ LeftButtonPressEvent === s
default action to be executed

https://vtk.org/doc/nightly/html/classvtkCommand.html#a59a8690330ebcb1af6b66b0f3121f8fe

Example:

CSharp

var interactor = vtkRenderWindowInteractor.New();

interactor.MouseMoveEvt += (vtkObject sender, vtkObjectEventArgs e) => {
Console.WriteLine("Mouse move"); // Do something meaningful

}i

var style = vtkInteractorStyleTrackballCamera.New();
interactor.SetInteractorStyle(style);
style.CharEvt += (vtkObject sender, vtkObjectEventArgs e) => {
var style = vtkInteractorStyle.SafeDownCast(sender)
?? throw new Exception("Wrong type");

if(style.GetInteractor().GetKeySym() == "p") {
Console.WriteLine("P has been pressed!"); // Do something meaningful
} else {

style.OnChar(); // keep default behavior for other cases
}
i

5. ActiViz on the Web

Starting with Activiz 9.5, it is now possible to use ActiViz .NET in your web browser, thanks
to VTK WASM support, mono-wasm and Emscripten project.

To start a WASM project, please take a look at the HelloVTK-WASM example README . md
file.

@ O locahost5es O @ e

6. ActiViz in Unity

ActiViz enables the integration of the high-performance algorithms, data representation,
scalability, and visualization techniques offered by VTK into the high quality and
convenient environment that Unity provides.

Check out Kitware’s blog for more information or contact us to request a trial version.

& Unity 2018.4.12f1 - SampleScene.unity - VTKUnity-Activiz - PC, Mac & Linux Standalone* <OpenGL 4.5>
File Edit Assets GameObject Component Window Help

&

<

Volume Rendering Example

https://blog.kitware.com/rendering-vtk-into-unity/
https://www.kitware.eu/contact/

7.

Examples

In the following examples, we dispense with the details of the code and project creation.
Rather we provide an eclectic mix of examples demonstrating some of the power of VTK,
including highlighting some code snippets that are relevant to key functionality. The
complete code, in C# and Visual Basic, is available in the installation directory under the

Examples subdirectory.

Important Notes: These examples were written to be simple, clear demonstrations of the
potential of ActiViz .NET. In general less than an hour was spent writing these examples,
and even the Wikipedia browser was completed in well under a day. Thus Kitware does
not claim that these are bulletproof applications meant for industrial application. Further,
there are some specific limitations of which you should be aware:

e If you install the software in the “Program Files” directory (or other privileged
location), then you will have to build the software with admin privileges, or
preferably, copy the examples to a non-privileged location and fix the appropriate

reference paths.
e The two pre-compiled applications, the Wikipedia Browser and the File Browser,

may experience problems when requests lead to processing large amounts of data.
Please refer to the specific examples for further clarification.

Despite these caveats, VTK is commonly used in applications requiring robust, high-
performance code. However, this requires extra programming safeguards omitted from
these examples for the sake of clarity.

7.1. Load Image Files Dialog

This example demonstrates a simple .~ 0«
dialog to open and display an image. ' igopesonimage

It supports several file formats
including .png, .jpg, .jpeg, .tif, .slc,
.dicom, .minc, .bmp, and .pmn. It will
also support .vtk files, which supports
data types including polygonal data,
structured grids, and unstructured
grids. D 4
This image viewer is unusual in that it
places the image on a quadrilateral
polygon using texture mapping. The
polygon exists in 3D space so it is
possible to move the camera around the polygon using the render window interactor. The
“Simple Dialog Example” illustrates what the application looks like after loading a
simple image file.

ActiViz?NET

7.2. Delaunay Triangulation

The Delaunay triangulation is a
construct in computational geometry
used to generate triangulations (i.e.,
polygonal meshes where the polygons
are all triangles). It has many useful
functions including interpolating data.
In this example, a random set of
points in a 2D plane is generated.
Next, VTK filters are used to place
tubes around the edges and ball
glyphs at the mesh vertices. You may
wish to play with the number of
points generated, as well as the
appearance of the graph by modifying
the underlying C# source code.

B Visualization Toolkit - Win320penGL #2 = m} X

7.3.

Box Widget

VTK has an extensive set of widgets. Widgets are | ®' Visuslization Toolidt-.. ~ — O X
objects that appear in the scene but may be directly
interacted with. Widgets are analogous to 2D GUI
devices such as buttons and sliders, except in 3D
they can take on much more complex forms. The
figure to the right shows one very general widget
called the box widget.

The box widget has six faces that can be selected
and then rotated. Each face can be translated
separately to modify the extent of the box. The box
can also be uniformly scaled and translated. The
widget can be queried to return useful information
such as the current transformation matrix, and the
six planes that form the box. In VTK, this information can be used by the data processing
pipeline to perform additional operations. For example in the figure shown, the six planes
are used to clip the mace. The surface of the mace outside of the box is grey, the surface
inside is green. Also, when you run the example, keypress—i is used to enabled/disable
the widget (it will appear and disappear from the scene).

One of the important features of this example is the use of events and associated
callbacks to couple the widget with other VTK objects. In this example, we define a
callback function as follows:

public static void
SelectPolygons (vtkObject sender, vtkObjectEventArgs e)

{
boxWidget.GetPlanes ((vtkPlanes)planes) ;
selectActor.VisibilityOn () ;

}

Here the “planes” object is a collection of the six planes retrieved from the widget. In
turn, the planes define a clip function to the vtkClipPolyData filter. Next, the callback
function is connected to the box widget by observing the end interaction event. (Typically
widgets provide three events: start interaction, interaction, and end interaction.)

boxWidget.EndInteractionEvt +=
new vtkObject.vtkObjectEventHandler (SelectPolygons) ;

Thus, when the widget is manipulated, the event is triggered (at the end of motion) and
the callback function is invoked. Thus widgets are very easy to add and to use in ActiViz.

7.4. Streamline Generation

This example shows some of the visualization
capabilities of VTK. A structured grid (think of a
volume warped in 3D space so that it is
topologically regular but geometrically distorted)
is read with associated scalar and vector data. This
3D dataset is the result of a computational
simulation of combustion in a segment of an
annular combustor from an aircraft engine.

B Visualization Toolkit -... = O *

To visualize the data, streamlines are generated.
These synthetic streamlines are similar to smoke
traces used in wind tunnels, and represent the path
that a massless particle would take in a vector field
(here the vector field is the flow momentum). The
streamlines are modified by using a VTK filter to
place a ribbon on the streamline. Since streamlines
must have a starting point, a line widget is used to seed the streamlines.

Once you compile and run the example, aside from using the interactor to position the
camera, it is possible to move the line widget. Do this by selecting the widget end points
(marked as little balls), or grabbing the line and translating it around. It is also possible to
modify the code to increase the line resolution in order to generate more streamlines
emanating from it.

7.5.

Wikipedia Browser

The general idea of this application is to enable browsing of Wikipedia (the free
encyclopedia wikipedia.org) pages. The Wikipedia Browser example uses VTK’s
information visualization classes to show relationships between Wikipedia entries as a
graph (or network). You can interact with this graph to see how articles relate to one
another.

The application consists of two panels: on the left a graph browser indicating the
relationship of Wikipedia articles to one another; on the right, the Wikipedia web page
corresponding to the recently selected graph node (see Figure below).

&8 Wikipedia Browser = [m}

Origin Article | Kitware] Links Per Atticle 7 Mumber Of Hops 2[4 Go

W Kitware
Company type Private
Industry Computer software

Large Data Visualization
Biomedical Imaging
Quality Software Process
ﬂrnf:i:nce o Informatics

Ccrparqjeilll‘le i‘”“‘;“ e Data Publishing

Computer Vision

Open Source
Founded New York (1998)
Headquarters Clifton Park, New York, USA

"'-. Number of locations Chapel Hill, North Carolina
Large Data Visualization Santa Fe, New Mexico
Quality Soffware Process” Minneapolis, Minnesota
Arlington, Virginia
ﬂmg_d_lgaumﬂglug.mf Nonprofit organization Lyon, France
i nonpfofit organization Key people Lisa Avila
Computer soffware (CEC & co-founder)
chief executive officer Bill Hoffman
Soffware IR E =T (Chairman, CTO & co-founder)
grganization Claudine Hagen
(CFQ)
Will Schroeder
(co-founder)
Ken Martin
(co-founder)
Charles Law
(co-founder)
Stephen Aylward
(Senior Director of Strategic Initiatives)
Berk Geveci
(Senior Director of Scientific Computing)
Anthony Hoogs

Nfire Pracident nf Artificial Intellinenra

chief technglegy officer

company
information te€hnologyl

Corporate fitles
chief information officer

The application enables the user to type in a search string as a start point for the browser
(make sure to select the “Go” button to initiate the search). In the figure below, the initial
search string is “VTK”. Given this initial string, the search expands out into N links
where N is specified by the user (here the default value is 10). The first N links in the
initial string are followed to other Wikipedia pages, and this process continues H times,
where H is the user specified number of hops to follow. Note that N and H must be
carefully specified. If these numbers are big enough, the graph may grow rapidly (it is

possible to crash the application as currently written in N and H are too large). Further,
since the nodes represent a web page, each page must be accessed over the internet, and
then parsed, which can be very slow depending on network performance.

Once the initial graph is specified, it is possible to expand it iteratively. Simply use the
left mouse button to select a rectangular selection region in the left panel. Any nodes in
the selection region are further expanded in the graph. Note that when expanded, VTK’s
graph layout algorithm will run and can reposition the existing graph nodes. You may also
select a single node by left-mouse clicking on the node. If you select a single node, its
corresponding Wikipedia page is shown in the right panel. If you select a group of nodes
with a rectangular selection, then an arbitrary selection from the group is made and the
corresponding Wikipedia page is shown in the right panel.

The graph layout has some features that facilitate navigation. While the left mouse button
is used for selection, the middle mouse button can be used to translate the graph, and the
right mouse button to zoom in and out (move the mouse “up” to zoom, and “down” to
zoom out). Zooming in and out causes text to appear and disappear dynamically. Finally,
if your mouse has a scrolling wheel, scrolling the wheel also zooms in and out on the
graph.

The source code for this application is included in the ActiViz .NET examples directory;
feel free to extend it. Other VTK classes exist to improve the behavior of this application,
including ways to adjust graph layout, control mouse bindings, change the selection
process, and populate the scene.

7.6.

Sphere Puzzle

This is a cute example much like a Rubik’s
cube puzzle except on a sphere rather than
a cube. After the application initializes
itself by randomizing the panels on the
sphere, the user attempts to restore the
sphere to the proper coloring (to see the
final coloring, hit the “Reset” button).

Moving the sphere panels involves rotating
the sphere either in the longitudinal or
latitudinal directions. By moving the
mouse pointer close to a latitude or
longitude line, a portion of the sphere will
light up, indicating the portion that will
rotate. By hitting the “m” key, the
highlighted portion of the sphere will
rotate. Repeat this process until you return
the sphere to the proper coloring.

o' Sphere Puzzle = O *

Posttion cursor over the

Maoving pieces wil be
Press 'm'to

[Reset
CGuit

7.7.

Volume Rendering

Volume rendering is a visualization technique for rendering regularly sampled 3D data
(think of a stack of 2D images or slices, with a uniform vertical spacing between slices).
While there are many ways of implementing volume rendering, probably the simplest
way to think about it as a ray casting algorithm. Imagine that the volume varies in
transparency, where part of the volume may be fully transparent, and part opaque. Further
the volume may vary in color as well. A transfer function controls the transparency and
color; the transfer function typically maps the volume data value (e.g., intensity) into a
color and transparency value. Then to volume render, rays are cast from the camera
through each pixel in the renderer. Some may pass into and then traverse the volume,
while other rays may miss the volume entirely. For those rays that intersect the volume,
sample points are selected, in order, along the ray and mapped through the transfer
function based on the data values at each sample point. The color and transparency is
accumulated until the ray exits the volume, or the pixel becomes fully opaque. In the past,
volume rendering was a compute intensive, typically slow process. However, with
modern CPUs and GPUs, volume rendering performance realizes interactive frame rates.
VTK implements several different volume rendering strategies as implemented by
vtkVolumeMapper and subclasses.

1® Volume Rendering = O X

In this example, two render windows are used. One window is connected to a slider and
shows the volume slices. The second window shows a volume-rendered image. The
second window supports the standard interactor bindings. On modern computers, the
application will be fully interactive. (Note: careful examination of the volume rendering
window shows that level-of-detail (LOD) is being used while interacting with the data.
Once the mouse is released, the rendering reverts to full resolution. LOD strategies are
common in computer graphics and VTK supports this in a variety of ways. See
vtkLODActor, for example.)

7.8.

Cube Axes Actor

VTK provides many classes for annotating data. In the following example, two renderers
are placed in a single render window, and a vtkCubeAxesActor is used to annotate the
data as shown in the figure below. The two instances of vtkCubeAxesActor are
configured differently so that one always emanates from the corner of the object’s
bounding box closest to the camera, and the other follows the closest edges of the
bounding box. Also, a camera is shared between the two renderers so that the two views
are synchronized with each other.

B VTK - Cube Axes — O X

Other types of annotation in VTK include text (both 2D, residing on top of the 3D
geometry, or 3D, embedded in the 3D scene); captions, popup balloons, axes, labels, x-y
plots, and many other classes.

7.9. Decimation

Decimation, or polygon reduction, is a technique used in computer graphics to reduce the
complex of geometric models. For example, in the figure below, the original model of Big
Buck Bunny contains over 16,000 polygons; the decimated model contains approximately
8,000 polygons. In computer graphics and visualization, it is common to produce models
with large polygon counts. Such models can be difficult to manipulate due to the delays
in rendering and processing the data. Decimation is used to limit data sizes and thereby
improve interaction rates.

In this example, models from the open-source movie Big Buck Bunny are used to
demonstrate decimation (models copyright the Blender Foundation |
www.bigbuckbunny.org). VTK provides several different decimation algorithms with
varying levels of speed and fidelity. The fastest algorithm is vtkQuadricClustering, the
algorithm that generates models with the best fidelity is vtkQuadricDecimation. In the
example above, vtkDecimatePro is used. (See the included documentation for more
information.) Since the source code is provided, interested readers may want to try
different algorithms.

g5 Decimate Bunny = O s

484 Decimation Level [g8] Decimate [g] About Bunny -

Before

(J Smooth [_] Texture Big Buck Bunny Models (c) copyright Blender Foundation | www bigbuckbunmny .ong

7.10.

File Browser

The next example is a useful application
for quickly locating large files and
directories in a directory tree. The
application uses VTK’s tree map class and
other information visualization classes. A
tree map is a layout scheme that represents
the “size” of each node in a tree (including
the node’s children) by a rectangle. In turn,
the children are embedded in the parent’s
rectangle in a recursive process. The
meaning of size varies depending on the
application. In this example, size means
the disk space usage of a file (if a leaf
node) or the disk usage of the files and
subdirectories contained within it (if an
intermediate, directory node).

To use the application, simply load the
directory you are interested in. Depending
on the size of the directory and the

E File Tree - O *

View Folder Viewing C:vdeviib\ActiViz. NET 9.4.2024 Supported Edition*\Ex

'c;! ' rr Iﬁ&TMMOEsper ’
GZ‘WJC‘BET '35 r "Ev fMBRiTar eife/B

ETCGr Regource :esx ~rr

FI|EC{JI‘IfEf‘IﬂI‘I
Hemfﬂ(
Hell

P apeﬁ[es

Tresx

CPFrspraJ I’E:perf es |

' ! Fmﬂwlnﬂﬁ I’
Cu'behxevs ar Forml

My Pro ject Seffings. Desmﬂ@ebug

I'CE Fr EQ;TEWFF ;ea-mﬁ'ne M [

67A0ccoercc63-48df-9564-8 ﬂﬁg Te.vsid
FTeTIoVTKWWn X64 C3 = 2
Fom] xTTF
T.reexr

DelMfEEH) c?
1Be! Volume Rendenn_ﬂﬂkip
DelM
VEU 64

v‘b o
it Upgradetog.hfm

subdirectories and files contained within it, the program may take anywhere from one or
two seconds to minutes to execute. Once the image (shown) is generated, you can interact
with the display. Labels are placed in the center of each rectangle and dynamically resize
based as the user zooms in and out towards the tree map. Further, by moving the mouse
pointer over the tree map a label will appear indicating the current directory or file at
which you are pointing. Selecting (left mouse button) brings up a file browser. Use the
right mouse button to zoom, and the center button to pan across the tree map.

(A cautionary note: if you run this example from Visual Studio in debug mode in very large
directories, timeouts may occur that produce errors. The solution is not to run in debug

mode.)

8. For More Information

The following section lists additional resources to learn more about VTK and Kitware.

8.1. Manual Pages

The ActiViz .NET product is distributed with extensive documentation on a per class
basis. Refer to this documentation for details regarding the use of the examples shown
here. A good way to view this is through Visual Studio’s object browser view. Choose
“Object Browser” from the view menu, and then browse through the Kitware.VTK
classes.

8.2. VTK.org Web Site

The VTK open-source community maintains resources at http://www.vtk.org. Besides
on-line documentation, user’s and developer’s mailing lists are available for posting and
receiving answers to questions. Refer to vtk.org for more information on joining mailing
lists.

8.3. More Examples

VTK has hundreds of additional examples available from which to learn about it. These

examples are written in C++ or other VTK wrapping languages such as Python. In most

cases these examples may be directly translated into a .NET supported programming

language. A large number of tests, used to ensure the quality of VTK, are also useful

references for learning about VTK. These tests and examples are great jumping off points

for ActiViz users who wish to write their own .NET applications.

VTK examples: https://examples.vtk.org/site/Cxx

VTK tests are available in VTK source code, most tests are located in
<kit>/<module>/Testing/Cxx for example
https://gitlab.kitware.com/vtk/vtk/-/tree/master/Rendering/Core/Testing/Cxx.

8.4. VTK Books

VTK was created in 1993 as part of a textbook published by Prentice-Hall. Because the
software was useful, and because of its open-source license, a community quickly grew
up around the system. Since that time, the textbook has evolved and a supplemental V'TK
User's Guide has been written. These two books, listed below, are available through
Kitware at http://www.kitware.com/products/books.html and Amazon.com.

o The Visualization Toolkit An Object-Oriented Approach to 3D Graphics. Schroeder,
Martin, Lorensen — this is principally a theory book on visualization, although it
contains many practical examples.

® The VIK User's Guide — shows how to use VTK through an extensive set of
examples.

8.5. Related Software

Kitware creates and distributes many open-source and proprietary software systems. A
synopsis of some of these systems follows.

http://www.vtk.org/
https://examples.vtk.org/site/Cxx/
https://gitlab.kitware.com/vtk/vtk/-/tree/master/Rendering/Core/Testing/Cxx
http://www.kitware.com/products/books.html

Open Source Software (BSD or BSD-style licenses)

The Visualization Toolkit (VTK) — provides 3D visualization capabilities
including information visualization, volume rendering, modeling, data processing,
and human-computer interaction tools (http://www.vtk.org).

The Parallel Visualization Application (ParaView) — built on VTK, ParaView is a
distributed, scalable visualization application designed for data sizes ranging from
small to very large (http://www.paraview.org).

The Insight Segmentation and Registration Toolkit (ITK) — provides a
comprehensive suite of image processing, registration and segmentation tools for
biomedical and other imaging tasks (http://www.itk.org).

CMake, CTest, CPack, and CDash — these systems form the core of Kitware's
quality software process. CMake is used to manage cross-platform development.
CTest and CDash are the software testing client and server, respectively. CPack is
used to package and distribute software across multiple computing platforms
(http://www.cmake.org, http://www.cdash.org).

3D Slicer — is a biomedical application built on VTK and ITK. It has been
successfully employed for medical and biological imaging applications
(http://www.slicer.org).

http://www.vtk.org
http://www.paraview.org
http://www.itk.org
http://www.cmake.org/
http://www.cdash.org
http://www.slicer.org

ActiViz .NET OpenSource Edition

Copyright (c) 2017 Kitware Inc. & Kitware SAS
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither name of Kitware, Inc., Kitware SAS, nor the names of any
contributors
may be used to endorse or promote products derived from this software
without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ActiViz .NET Supported Edition

See Activiz license agreement for more information.

Copyright (c) 2019 Kitware SAS & Kitware Inc.
All rights reserved.

Redistribution and use in source with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Neither name of Kitware, Inc., Kitware SAS, nor the names of any
contributors
may be used to endorse or promote products derived from this software
without
specific prior written permission.

Redistribution in binary form is not permitted.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://www.kitware.eu/wp-content/uploads/2022/01/ActiViz-License-Agreement.pdf

	1.​Introduction
	1.1.​What is ActiViz .NET?
	1.2.​What is VTK?
	1.3.​How ActiViz .NET Differs from VTK
	1.4.​Licensing

	2.​Getting ActiViz .NET
	3.​Installing ActiViz .NET
	3.1.​System Requirements
	3.2.​Installation With Installer (Windows)
	3.3.​Installation With NuGet
	Visual Studio
	Command line

	3.4.​ActiViz Control in Visual Studio

	4.​Using ActiViz .NET
	4.1.​Activiz .NET Core Nuget Package (Recommended)
	4.2.​ActiViz .NET Framework Reference
	4.3.​A Ridiculously Brief Overview of VTK
	4.4.​Hello VTK - Console Application
	4.5.​Hello VTK - Windows Form Application
	4.6.​Hello VTK - WPF Application
	4.7.​Hello VTK - Avalonia Application

	​
	4.8.​VTK events and observers

	5.​ActiViz on the Web
	6.​ActiViz in Unity
	7.​Examples
	7.1.​Load Image Files Dialog
	7.2.​Delaunay Triangulation
	7.3.​Box Widget
	7.4.​Streamline Generation
	7.5.​Wikipedia Browser
	7.6.​Sphere Puzzle
	7.7.​Volume Rendering
	7.8.​Cube Axes Actor
	7.9.​Decimation
	7.10.​File Browser

	8.​For More Information
	8.1.​Manual Pages
	8.2.​VTK.org Web Site
	8.3.​More Examples
	8.4.​VTK Books
	8.5.​Related Software
	ActiViz .NET OpenSource Edition
	ActiViz .NET Supported Edition

