
ActiViz .NET User's Guide

Version 9.3



© 2008-2023 Kitware, Inc. & Kitware SAS
http://www.kitware.com

For More Information:
● Kitware provides training for VTK. Learn more at

https://training.kitware.fr/browse
● Kitware provides support and consulting services for VTK at

https://www.kitware.eu/service/support
● Books explaining the theory and use of VTK are available from

https://www.kitware.com/what-we-offer/#books

Contributors:
● Jeff Baumes —Wikipedia Browser
● David Cole — Technical Lead
● Jon Crall — Technical Contributor, Wikipedia Browser, examples
● Bill Hoffman — Technical Contributor
● Niki Russell — Documentation, web support
● Will Schroeder — Documentation, examples
● Tristan Coulange — Technical Contributor
● Lucas Gandel — Technical Lead

and the world-wide VTK community at http://www.vtk.org.

Join the VTK Community at http://www.vtk.org

http://www.kitware.com/
https://training.kitware.fr/browse
http://www.kitware.com/products/support.html
https://www.kitware.eu/service/support
http://www.kitware.com/products/books.html
https://www.kitware.com/what-we-offer/#books
http://www.vtk.org/
http://www.vtk.org/




Table of Contents
1. Introduction 4

1.1. What is ActiViz .NET? 4
1.2. What is VTK? 5
1.3. How ActiViz .NET Differs from VTK 5
1.4. Licensing 5

2. Getting ActiViz .NET 5
3. Installing ActiViz .NET 5

3.1. System Requirements 5
3.2. Installation With Installer 6
3.3. Installation With NuGet 6
3.4. ActiViz Control in Visual Studio 9

4. Using ActiViz .NET 11
4.1. ActiViz .NET Framework Reference 11
4.2. Activiz .NET Core Nuget Package 12
4.3. A Ridiculously Brief Overview of VTK 14
4.4. Hello VTK - Console Application 16
4.5. Hello VTK - Windows Form Application 19
4.6. Hello VTK - WPF Application 22
4.7. Hello VTK - Avalonia Application 26

5. ActiViz in Unity 28
6. Examples 29

6.1. Load Image Files Dialog 31
6.2. Delaunay Triangulation 31
6.3. Box Widget 32
6.4. Streamline Generation 33
6.5. Wikipedia Browser 34
6.6. Sphere Puzzle 35
6.7. Volume Rendering 36
6.8. Cube Axes Actor 37
6.9. Decimation 38
6.10. File Browser 39

7. For More Information 40
7.1. Manual Pages 40
7.2. VTK.org Web Site 40
7.3. More Examples 40
7.4. VTK Books 41
7.5. Related Software 41
ActiViz .NET OpenSource Edition 42
ActiViz .NET Supported Edition 43



1. Introduction
Welcome to the ActiViz .NET User's Guide. This document is organized into four parts:
introduction, installation guide, tutorial by example, and additional information. The
introduction provides a high-level overview of ActiViz .NET. The installation guide
explains how to install the software. Once installed, you can try out the examples
distributed with this software, and follow the tutorial by example section in preparation to
writing your own code. Finally, if you would like to learn more, see the final section
which provides links to related information.

1.1. What is ActiViz .NET?
ActiViz .NET provides an integration layer for The Visualization Toolkit (see the next
section for more information about VTK) enabling VTK to be used in the Microsoft
.NET framework. This means that you can tap into the power of VTK using .NET
programming languages such as C# and Visual Basic .NET. ActiViz .NET is designed for
the application developer creating software in the Microsoft .NET framework. While the
system does come with a useful application (i.e., the Wikipedia Browser), realizing the
full power of ActiViz .NET requires you to write software programs.

1.2. What is VTK?
VTK, or the Visualization Toolkit, is an object-oriented software system for 3D graphics,
data visualization, data processing, human-computer interaction, information
visualization, volume rendering and much more. It has been under development for over
a decade, and is used by researchers, developers and businesses from around the world.
VTK is used to view large datasets in supercomputing environments, and is used in US
National Labs, research organizations, and supercomputing centers. Tens of millions of
dollars of labor have been invested in the system from commercial entities, government
funding, and the open-source community. It is used for a diverse set of applications,
including volume rendering, medical imaging (http://www.slicer.org), visualization
(http://www.paraview.org), and many, many more.

1.3. How ActiViz .NET Differs from VTK
VTK is an open-source system written in C++ that you can download and use for free.
However using VTK requires significant C++ developer skills, and VTK does not easily
integrate into the Microsoft development environment. ActiViz .NET provides the
appropriate integration layer so that VTK seamlessly fits into the .NET framework. This
means that you can use languages such as C# and Visual Basic to add powerful 3D
visualization capabilities to your own applications. This integration layer provides the
benefits of the .NET layer including on-line documentation and intelligent coding.

ActiViz .Net also includes the component ActiViz COM, a complete Microsoft COM
compatible interface to the Visualization Toolkit (VTK) software system. It is used to
embed VTK capabilities into Microsoft applications such as Word, PowerPoint, and
Excel.

http://www.kitware.com/products/volview.html)


1.4. Licensing
ActiViz .NET is licensed under a BSD license, a family of permissive free software
licenses, imposing minimal restrictions on the redistribution of covered software.
Therefore, your ActiViz developments can be integrated into commercial applications.
ActiViz .NET is licensed in two flavors: The OpenSource Edition and the Supported
Edition. Purchasing the Supported Edition removes some conditions for binary
redistribution.

2. Getting ActiViz .NET

ActiViz .NET installers are available here: https://www.kitware.eu/product/activiz

Notes:
The latest Open-Source version available is ActiViz .NET 5.8.0.
The latest Supported version available is ActiViz .NET 9.3.

3. Installing ActiViz .NET
This section describes how to download and install ActiViz .NET, and how to configure
Microsoft Visual Studio to use ActiViz .NET.

3.1. System Requirements
ActiViz .NET runs on operating systems from Microsoft XP (SP2) to Windows 10. To
develop with the system, you can use Visual Studio from version 2008 to version 2022.

While VTK itself can run on small to large computers, it is a sophisticated, powerful
system that requires adequate computing resources. We advise using hardware with a
good 3D graphics cards, 2 GB memory and a modern CPU.

3.2. Installation With Installer
Once you have downloaded the appropriate installer, open it and follow the instructions.
The installation process proceeds as follows.

● First, you will see the welcome splash screen. Choose “Next>” and proceed to the
next step.

https://www.kitware.eu/product/activiz


● Next, please review the license agreement and agree to its terms.

● Indicate where on your computer you would like to install the software. For the
purposes of this User’s Guide, the installation location is in C:\Program Files
(x86)\ActiViz.NET 9.3 Supported Edition. (Note that administrative privileges are
required to install ActiViz in the “Program Files” directory. However, you may
install the software anywhere on the system.) Choose “Next” and proceed with the
installation.



● You will also need to indicate where to place the installation on your Start Menu
Folder.

● Once you select “Install” the software installation process begins as illustrated below.
It should take less than a minute.



● That’s it, you have successfully installed ActiViz .NET on your computer.

3.3. Installation With NuGet

Activiz Nuget packages of the latest Supported Version targeting .NET Core are provided
with the installer.
To install and use Activiz in .NET Core projects, you must provide nuget with the location
of the packages that come with the installer. This can be achieved by adding the “package”
directory, located in your Activiz installation folder, to the local nuget package feed.



To do so, first install Activiz with the installer, then proceed with the following steps in
Visual Studio:
● Right-click on your project
● Select “Manage NuGet Packages”
● Click the Package Source Settings wheel in the upper right corner of the Nuget

Package Manager

● Add a new package source using the “+” icon, and update the Source path to include
the location of your Activiz nuget packages

● The new package source appears in the list and allows for browsing local packages.
You can now install Kitware.VTK and start using Activiz.



Nuget packages of the Activiz Open Source Version targeting .NET Framework 2.0 are
available on nuget.org, so you can easily install them in your project.
Currently the versions of ActiViz .NET available in the NuGet Gallery are:
● ActiViz .NET 5.6.1 x32
● ActiViz .NET 5.6.1 x64
● ActiViz .NET 5.8.0 x32
● ActiViz .NET 5.8.0 x64

3.4. ActiViz Control in Visual Studio
ActiViz .NET provides a user control to integrate VTK advanced rendering into your
application GUI.
In recent versions of Activiz, the RenderWindowControl provided in the Kitware.VTK
assembly should be automatically detected and added to the VisualStudio Designer
ToolBox when adding a reference to Activiz in your project. (See next section for more
information on how to add references)

The RenderWindowControl can be used when designing applications, either when using
the .NET Core package or the 32-bit .NET Framework references.
The 64-bit version of ActiViz targeting the .NET Framework cannot be used in the
VisualStudio Designer. Fortunately this step is not required since you can integrate
ActiViz Control manually in your code.



If the RenderWindowControl is not available by default in the Designer ToolBox, you
may need to configure Visual Studio as follows. This step requires a 32bits version of
ActiViz.

First, choose “Tools” from the menu bar and select
“Choose Toolbox Items” as shown in the figure. A
popup will appear.

You will need to browse for .NET Framework Components by selecting “Browse” to
search in the ActiViz bin directory (e.g., C:\Program Files\ActiViz.NET 9.3 Supported
Edition x86\bin). The following selection will appear:



Select the Kitware.VTK.dll assembly. This will make the ActiViz control available in
your toolbox when designing WindowsForm applications.



4. Using ActiViz .NET
4.1. ActiViz .NET Framework Reference

The first step to use ActiViz in your project is to add a reference to ActiViz libraries. For
this, right click on your project in the Solution Explorer, and choose “Add Reference”. This
will bring up a dialog, at which point you will “Browse” to the ActiViz .NET install
location C:\Program Files\ActiViz.NET 9.3 Supported Edition x86\bin (or appropriate).
Then choose the two assemblies as shown in the figure below:

● “Kitware.mummy.Runtime.dll”
● “Kitware.VTK.dll”.

Note: This step is not required if you installed ActiViz via NuGet.

4.2. Activiz .NET Core Nuget Package
Starting at version 9.3, nuget packages of ActiViz are provided for .NET Core applications.
The following target frameworks are available within the package:

- netcoreapp3.1
- net7
- net7-windows (For WindowsForm and WPF support)

To start using Activiz in .NET Core applications, follow both the installation instructions of sections
Installation With Installer and Installation With Nuget.

4.3. A Ridiculously Brief Overview of VTK



We begin with a brief introduction of VTK. Though VTK is a large and complex
software system, knowledge of its conceptual framework will greatly assist you in
understanding the following examples.

First, VTK is an object-oriented system. The practical realization of this design is that
objects are instantiated and then combined in a variety of patterns to form applications.
Each class represents a focused piece of functionality. The instances (or objects) of these
classes are manipulated by invoking methods upon them.

Second, VTK is a data-centric toolkit manifesting a data-flow pipeline. The so-called
visualization pipeline is created by connecting algorithms (also called process objects)
together. Behind the scenes, the algorithms exchange data objects between themselves
across the pipeline. For example, a pipeline can be created that reads polygonal data,
decimates the data, smooths it, and then passes it on to VTK’s rendering subsystem.
Practically the purpose of the visualization pipeline is to transform data into rendering
primitives which are eventually displayed through VTK’s graphics subsystem; although
in some cases VTK may just be used as a data processing engine—loading data,
processing it, and writing it back to disk.

The graphics subsystem is used to display data of various forms including polygonal data
and volumes (i.e., regularly sampled data). The rendering system consists of the
following key objects that are combined into a scene to produce the final 3D display.

● vtkActor and vtkProp — the objects to be rendered that appear in the scene. In
general, we refer to these objects as “actors” although vtkActor is in fact a subclass
of vtkProp (like the “props” found on stage).

● vtkCamera — the object used to project the actors from 3D space into a 2D image.
● vtkLight — used to illuminate the scene.
● vtkProperty — used to apply material (i.e., lighting) properties to actors.
● vtkRenderer — this is the object where the rendered image is shown.
● vtkRenderWindow — one or more renderers can be combined into a render

window.

This organization of objects is consistent with the “lights, cameras, actors” conceptual
model that is familiar to many of us from the movie/video making business. Note that
many other objects are present behind the scenes such as transformation matrices
(vtkTransform), interactors (process mouse and keyboard events), and texture maps
(vtkTexture). Note that when building Form Applications, ActiViz .NET system
combines the vtkRenderer and vtkRenderWindow into a single class called the
“RenderWindowControl”. This is the form that is created in ActiViz applications and
embedded into the .NET program.

One important note: the vtkRenderWindowInteractor class is the keystone class for
managing mouse and keyboard events in the render window. Through interactor styles
(subclasses of vtkInteractorObserver) it is possible to customize the interaction behavior.



By default, the interactor supports the following bindings:

● left mouse — rotate camera
● middle mouse — translate camera
● right mouse — zoom in/out
● keypress j — enter joystick mode (mouse down causes continuous camera motion),

exits trackball mode
● keypress t — enter trackball mode (mouse down plus motion causes camera motion),

exits joystick mode
● keypress f — press this key when over an actor (a pick is performed behind the

scenes); the camera focal point is set to the picked position and the camera flies
towards the point.

● keypress w — the actors are shown in wireframe
● keypress s — the actors are shown as surfaces
● keypress r — reset the camera so that all visible actors appear in the scene.

The examples that follow in this section all implement these mouse and keyboard
bindings.

Besides the basic classes described here, there are hundreds more classes that implement
key functionality for the VTK system. This includes filters for processing data,
interaction widgets for direct manipulation of data, image processing, volume rendering,
information visualization, mathematics, and computational geometry (to name just a
few). The following examples demonstrate a variety of ways in which VTK can be used,
and how to use VTK in the .NET framework.



4.4. Hello VTK - Console Application
In the first example we will create a console application. Create a new Visual Studio
project and choose the Console application template.

Open the created project and add the required references to ActiViz depending on your .NET
version, by following the instruction in Using Activiz .NET.

Now it’s simply a matter of adding in the appropriate references and writing some VTK
code. In this example we will use C#. (Please read the short introduction to VTK to help
clarify some of the concepts.) To add in references, make sure that the line “using
Kitware.VTK;” (highlighted below) is added to your application.

using System;
using System.Collections.Generic;
using System.Text;
using Kitware.VTK;

namespace HelloVTK

{
class Program
{

static void Main(string[] args)
{
// add code here
}

}
}



Next, insert the appropriate VTK code into the Main() function as exemplified by the
following.

public static void Main(String[] argv)
{

// Create a simple sphere. A pipeline is created.
sphere = vtkSphereSource.New(); sphere.SetThetaResolution(8);
sphere.SetPhiResolution(16);

shrink = vtkShrinkPolyData.New();
shrink.SetInputConnection(sphere.GetOutputPort());
shrink.SetShrinkFactor(0.9);

mapper = vtkPolyDataMapper.New();
mapper.SetInputConnection(shrink.GetOutputPort());

// The actor links the data pipeline to the rendering subsystem
actor = vtkActor.New();
actor.SetMapper(mapper); actor.GetProperty().SetColor(1,0,0);

// Create components of the rendering subsystem
//
ren1 = vtkRenderer.New();
renWin = vtkRenderWindow.New();
renWin.AddRenderer(ren1);
iren = vtkRenderWindowInteractor.New();
iren.SetRenderWindow(renWin);

// Add the actors to the renderer, set the window size
//
ren1.AddViewProp(actor);
renWin.SetSize(250,250);
renWin.Render();
camera = ren1.GetActiveCamera();
camera.Zoom(1.5);

// render the image and start the event loop
//
renWin.Render();
iren.Initialize();
iren.Start();

deleteAllVTKObjects();
}

static vtkSphereSource sphere;
static vtkShrinkPolyData shrink;
static vtkPolyDataMapper mapper;
static vtkActor actor;
static vtkRenderer ren1;
static vtkRenderWindow renWin;
static vtkRenderWindowInteractor iren;
static vtkCamera camera;



///<summary>Deletes all static objects created</summary> public static
void deleteAllVTKObjects()
{

//clean up vtk objects
if (sphere != null) { sphere.Dispose(); }
if (shrink != null) { shrink.Dispose(); }
if (mapper != null) { mapper.Dispose(); }
if (actor != null) { actor.Dispose(); }
if (ren1 != null) { ren1.Dispose(); }
if (renWin != null) { renWin.Dispose(); }
if (iren != null) { iren.Dispose(); }
if (camera != null) { camera.Dispose(); }

}

Compiling and running the C# program yields the red sphere above. (Note that some
interaction with the camera was performed to move the camera into the position shown.)

In this example, a simple pipeline is implemented that generates some polygonal data (the
sphere source); shrinks the polygons towards their center (the shrink filter), and then
maps the data (e.g., polygons) to the graphics library. Since no lights and cameras are
manually created, they are automatically created. Also, the vtkRenderWindowInteractor
is used to control mouse and keyboard events in the window. Note: calling iren.Start() in
the example runs a Windows message loop. To exit the message loop, and hence the
application, simply close the window.



4.5. Hello VTK - Windows Form Application
To create a Windows Form Application (shown here in C#), select “Create a new project”
from the Visual Studio start menu. Select the Windows Forms App template for either the
.NET Framework or .NET Core, and fill the project information.

Open the created project and add the required references to ActiViz depending on your .NET
version, by following the instruction in Using Activiz .NET.

Next, go to the View Menu and make sure the Toolbox is visible.

Under the General category in the toolbox, the RenderWindowControl will appear. To
add the control to your application, select the RenderWindowControl and place it into the
form as shown in the figure below.

Note: The integration of the ActiViz control in your application can be done
programmatically. This can be necessary if the control is not in the ToolBox (see the part
ActiViz Control in Visual Studio for more details).



Next, double click on the RenderWindowControl to bring up the C# code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace HelloVTK
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void
renderWindowControl1_Load(object sender, EventArgs e)
{
//add code here
}

}
}



As in the Console Application, code can now be inserted into the skeleton application.
Make sure that “using Kitware.VTK;” is added, and add references to the solution.
Finally, note that the control provides some convenience methods for accessing the
renderer and render window, and builds in a render window interactor. Here is what the
code looks like, and the image that results from running the application:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

using Kitware.VTK;

namespace HelloVTK
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void
renderWindowControl1_Load(object sender, EventArgs e)

{
// Create a simple sphere. A pipeline is created.
vtkSphereSource sphere = vtkSphereSource.New();
sphere.SetThetaResolution(8);
sphere.SetPhiResolution(16);

vtkShrinkPolyData shrink = vtkShrinkPolyData.New();
shrink.SetInputConnection(sphere.GetOutputPort());
shrink.SetShrinkFactor(0.9);

vtkPolyDataMapper mapper = vtkPolyDataMapper.New();
mapper.SetInputConnection(shrink.GetOutputPort());

// Link the data pipeline to the rendering subsystem
vtkActor actor = vtkActor.New();
actor.SetMapper(mapper);
actor.GetProperty().SetColor(1, 0, 0);

// Create components of the rendering subsystem
//
vtkRenderer ren1 = renderWindowControl1.RenderWindow.

GetRenderers().GetFirstRenderer();
vtkRenderWindow renWin = renderWindowControl1.RenderWindow;

// Add the actors to the renderer, set the window size
//



ren1.AddViewProp(actor);
renWin.SetSize(250,250);
renWin.Render();
vtkCamera camera = ren1.GetActiveCamera();
camera.Zoom((double)1.5);

}
}

}

Note that the RenderWindowControls has an important
property that aid in debugging. If the property
AddTestActors is set to “True” then running the
application results in an image similar to the one shown
to the right. An extra cones is inserted into the VTK
scene. This property addresses the frustrating blank
image problem that can occur when the VTK pipeline is
configured incorrectly, or the application is executing
improperly.



4.6. Hello VTK - WPF Application
To create a Windows Presentation Foundation application, select “Create a new project”
from the Visual Studio start menu. You can use ActiViz in both WPF applications for the
.NET Framework and for .NET Core. Select the WPF App template you prefer and
choose the project name and location.

ActiViz render control relies on WPF-WindowsForm interop to run in a WPF application.
We use the WindowsFormHost component to provide a compatible area for the
RenderWindowControl.

A few limitations to this approach mainly prevent the control from being rotated or causes
air-space issues when having overlapping elements. This has generally no impact in the
application design.

Open the toolbox and add a WindowsFormHost XAML component in your main page:

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-and-windows-forms-interoperation?view=netframeworkdesktop-4.8#layout-support


Add the required references to ActiViz depending on your .NET version by following the
instruction in Using Activiz .NET.

Edit the MainWindow.xaml description to add the ActiViz .NET RenderWindowControl in
the WindowsFormHost component. Make sure the namespace containing the control
matches the one in the xmlns definitions.

An event handler is added to the Load event of the RenderWindowControl. This will be used
to initialize the VTK scene.



Properties and Events of the selected element can be easily edited in the Properties window by
clicking the xaml line of the element.

Edit the MainWindow.xaml.cs code to initialize the scene in the event callback we just added:
using System;
using System.Windows;
using Kitware.VTK;

namespace HelloVTKWPF
{
public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();

}

private void Form_Loaded(object sender, EventArgs e)
{
// Create a simple cube. A pipeline is created.
vtkCubeSource cube = vtkCubeSource.New();

vtkPolyDataMapper mapper = vtkPolyDataMapper.New();
mapper.SetInputConnection(cube.GetOutputPort());

// The actor links the data pipeline to the rendering subsystem
vtkActor actor = vtkActor.New();
actor.SetMapper(mapper);

// Create components of the rendering subsystem
vtkRenderer renderer =

_renderControl.RenderWindow.GetRenderers().GetFirstRenderer();
renderer.SetBackground(.2, .3, .4);

// Add the actors to the renderer
renderer.AddActor(actor);

}
}

}



4.7. Hello VTK - Avalonia Application
To create an Avalonia application, install the Avalonia templates using the following
command: dotnet new install Avalonia.Templates.
Then, select “Create a new project” from the Visual Studio start menu. Select the
Avalonia App template you prefer and choose the project name and location.

Once the solution is loaded, add the required Kitware.AvaloniaControls nuget package to the
list of dependencies by following the instruction in Using Activiz .NET Core Nuget
Package. The Kitware.VTK and Kitware.mummy.Runtime packages are automatically
added to the project as a dependency of Kitware.AvaloniaControls.

To add the ActiViz RenderWindowControl to the application window, open the
MainWindow.axaml file, and edit the xml to define the vtk namespace and add the control to
the window as highlighted below:



An event handler is then added to the AttachedToVisualTree event of the
RenderWindowControl. This will be used to initialize the VTK scene.
Edit the MainWindow.xaml.cs code as follows to add the AttachedToVisualTree event handler
and initialize the scene in the corresponding callback:

using Avalonia.Controls;
using Avalonia.Markup.Xaml;
using Kitware.AvaloniaControls;
using Kitware.VTK;
using System;

namespace HelloVTKAvalonia
{
public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();

}

private void InitializeComponent()
{
AvaloniaXamlLoader.Load(this);

RenderWindowControl ctrl = this.FindControl<RenderWindowControl>("VTKControl");
if (ctrl != null)
{
ctrl.AttachedToVisualTree += InitVTKScene;

}
}

public void InitVTKScene(object? sender, EventArgs args)
{
RenderWindowControl? mainView = sender as RenderWindowControl;

vtkRenderer renderer = vtkRenderer.New();
renderer.SetBackgroundAlpha(1.0);

mainView.RenderWindow.AddRenderer(renderer);

vtkInteractorStyleTrackballCamera interactorStyle = vtkInteractorStyleTrackballCamera.New();
renderWindow.GetInteractor().SetInteractorStyle(interactorStyle);

vtkSphereSource src = vtkSphereSource.New();
vtkPolyDataMapper mapper = vtkPolyDataMapper.New();
mapper.SetInputConnection(src.GetOutputPort());
vtkActor actor = vtkActor.New();
actor.SetMapper(mapper);
renderer.AddActor(actor);

}
}

}



5. ActiViz in Unity
ActiViz enables the integration of the high-performance algorithms, data representation,
scalability, and visualization techniques offered by VTK into the high quality and
convenient environment that Unity provides.
Check out Kitware’s blog for more information or contact kitware@kitware.eu to request a
trial version.

https://blog.kitware.com/rendering-vtk-into-unity/
mailto:kitware@kitware.eu


6. Examples
In the following examples, we dispense with the details of the code and project creation.
Rather we provide an eclectic mix of examples demonstrating some of the power of VTK,
including highlighting some code snippets that are relevant to key functionality. The
complete code, in C# and Visual Basic, is available in the installation directory under the
Examples subdirectory.

Important Notes: These examples were written to be simple, clear demonstrations of the
potential of ActiViz .NET. In general less than an hour was spent writing these examples,
and even the Wikipedia browser was completed in well under a day. Thus Kitware does
not claim that these are bulletproof applications meant for industrial application. Further,
there are some specific limitations of which you should be aware:

● If you install the software in the “Program Files” directory (or other privileged
location), then you will have to build the software with admin privileges, or
preferably, copy the examples to a non-privileged location and fix the appropriate
reference paths.

● If you are building with 32-bit ActiViz (Win32 x86) on a Win64 installation of
Windows you must change the "Target CPU" of the project to use x86 as the
target CPU type, not "Any CPU" which is typical. This step is necessary because
unmanaged code specific to the given processor in linked in during the build
process. With the setting “Any CPU”, the system runs the managed code as x64
and expects any unmanaged dlls to be in x64 format.

● The two pre-compiled applications, the Wikipedia Browser and the File Browser,
may experience problems when requests lead to processing large amounts of data.
Please refer to the specific examples for further clarification.

Despite these caveats, VTK is commonly used in applications requiring robust, high-
performance code. However, this requires extra programming safeguards omitted from
these examples for the sake of clarity.



6.1. Load Image Files Dialog
This example demonstrates a simple dialog to open and display an image. It supports
several file formats including .png, .jpg, .jpeg, .tif, .slc, .dicom, .minc, .bmp, and .pmn. It
will also support .vtk files, which supports data types including polygonal data, structured
grids, and unstructured grids.

This image viewer is unusual in that it places the image on a quadrilateral polygon using
texture mapping. The polygon exists in 3D space so it is possible to move the camera
around the polygon using the render window interactor. The “Simple Dialog Example”
illustrates what the application looks like after loading a simple image file.

6.2. Delaunay Triangulation
The Delaunay triangulation is a construct in
computational geometry used to generate
triangulations (i.e., polygonal meshes where the
polygons are all triangles). It has many useful
functions including interpolating data. In this
example, a random set of points in a 2D plane is
generated. Next, VTK filters are used to place
tubes around the edges and ball glyphs at the
mesh vertices. You may wish to play with the
number of points generated, as well as the
appearance of the graph by modifying the
underlying C# source code.



6.3. Box Widget
VTK has an extensive set of widgets.
Widgets are objects that appear in the
scene but may be directly interacted
with. Widgets are analogous to 2D
GUI devices such as buttons and
sliders, except in 3D they can take on
much more complex forms. The
figure to the right shows one very
general widget called the box widget.

The box widget has six faces that can
be selected and then rotated. Each
face can be translated separately to
modify the extent of the box. The box
can also be uniformly scaled and
translated. The widget can be queried
to return useful information such as
the current transformation matrix, and the six planes that form the box. In VTK, this
information can be used by the data processing pipeline to perform additional operations.
For example in the figure shown, the six planes are used to clip the mace. The surface of
the mace outside of the box is grey, the surface inside is green. Also, when you run the
example, keypress––i is used to enabled/disable the widget (it will appear and disappear
from the scene).

One of the important features of this example is the use of events and associated
callbacks to couple the widget with other VTK objects. In this example, we define a
callback function as follows:

public static void
SelectPolygons(vtkObject sender, vtkObjectEventArgs e)

{
boxWidget.GetPlanes((vtkPlanes)planes);
selectActor.VisibilityOn();

}

Here the “planes” object is a collection of the six planes retrieved from the widget. In
turn, the planes define a clip function to the vtkClipPolyData filter. Next, the callback
function is connected to the box widget by observing the end interaction event. (Typically
widgets provide three events: start interaction, interaction, and end interaction.)

boxWidget.EndInteractionEvt +=
new vtkObject.vtkObjectEventHandler(SelectPolygons);

Thus, when the widget is manipulated, the event is triggered (at the end of motion) and
the callback function is invoked. Thus widgets are very easy to add and to use in ActiViz.



6.4. Streamline Generation
This example shows some of the
visualization capabilities of VTK. A
structured grid (think of a volume warped in
3D space so that it is topologically regular
but geometrically distorted) is read with
associated scalar and vector data. This 3D
dataset is the result of a computational
simulation of combustion in a segment of an
annular combustor from an aircraft engine.

To visualize the data, streamlines are
generated. These synthetic streamlines are
similar to smoke traces used in wind tunnels,
and represent the path that a massless
particle would take in a vector field (here the
vector field is the flow momentum). The
streamlines are modified by using a VTK filter to place a ribbon on the streamline. Since
streamlines must have a starting point, a line widget is used to seed the streamlines.

Once you compile and run the example, aside from using the interactor to position the
camera, it is possible to move the line widget. Do this by selecting the widget end points
(marked as little balls), or grabbing the line and translating it around. It is also possible to
modify the code to increase the line resolution in order to generate more streamlines
emanating from it.

6.5. Wikipedia Browser
The general idea of this application is to enable browsing of Wikipedia (the free
encyclopedia wikipedia.org) pages. The Wikipedia Browser example uses VTK’s
information visualization classes to show relationships between Wikipedia entries as a
graph (or network). You can interact with this graph to see how articles relate to one
another.

The application consists of two panels: on the left a graph browser indicating the
relationship of Wikipedia articles to one another; on the right, the Wikipedia web page
corresponding to the recently selected graph node (see Figure below).



The application enables the user to type in a search string as a start point for the browser
(make sure to select the “Go” button to initiate the search). In the figure below, the initial
search string is “VTK”. Given this initial string, the search expands out into N links
where N is specified by the user (here the default value is 10). The first N links in the
initial string are followed to other Wikipedia pages, and this process continues H times,
where H is the user specified number of hops to follow. Note that N and H must be
carefully specified. If these numbers are big enough, the graph may grow rapidly (it is
possible to crash the application as currently written in N and H are too large). Further,
since the nodes represent a web page, each page must be accessed over the internet, and
then parsed, which can be very slow depending on network performance.

Once the initial graph is specified, it is possible to expand it iteratively. Simply use the
left mouse button to select a rectangular selection region in the left panel. Any nodes in
the selection region are further expanded in the graph. Note that when expanded, VTK’s
graph layout algorithm will run and can reposition the existing graph nodes. You may also
select a single node by left-mouse clicking on the node. If you select a single node, its
corresponding Wikipedia page is shown in the right panel. If you select a group of nodes
with a rectangular selection, then an arbitrary selection from the group is made and the



corresponding Wikipedia page is shown in the right panel.

The graph layout has some features that facilitate navigation. While the left mouse button
is used for selection, the middle mouse button can be used to translate the graph, and the
right mouse button to zoom in and out (move the mouse “up” to zoom, and “down” to
zoom out). Zooming in and out causes text to appear and disappear dynamically. Finally,
if your mouse has a scrolling wheel, scrolling the wheel also zooms in and out on the
graph.

The source code for this application is included in the ActiViz .NET examples directory;
feel free to extend it. Other VTK classes exist to improve the behavior of this application,
including ways to adjust graph layout, control mouse bindings, change the selection
process, and populate the scene.



6.6. Sphere Puzzle
This is a cute example much like a
Rubik’s cube puzzle except on a
sphere rather than a cube. After the
application initializes itself by
randomizing the panels on the
sphere, the user attempts to restore
the sphere to the proper coloring (to
see the final coloring, hit the
“Reset” button).

Moving the sphere panels involves
rotating the sphere either in the
longitudinal or latitudinal
directions. By moving the mouse
pointer close to a latitude or
longitude line, a portion of the
sphere will light up, indicating the
portion that will rotate. By hitting
the “m” key, the highlighted portion
of the sphere will rotate. Repeat this
process until you return the sphere
to the proper coloring.

6.7. Volume Rendering
Volume rendering is a visualization technique for rendering regularly sampled 3D data
(think of a stack of 2D images or slices, with a uniform vertical spacing between slices).
While there are many ways of implementing volume rendering, probably the simplest
way to think about it as a ray casting algorithm. Imagine that the volume varies in
transparency, where part of the volume may be fully transparent, and part opaque. Further
the volume may vary in color as well. A transfer function controls the transparency and
color; the transfer function typically maps the volume data value (e.g., intensity) into a
color and transparency value. Then to volume render, rays are cast from the camera
through each pixel in the renderer. Some may pass into and then traverse the volume,
while other rays may miss the volume entirely. For those rays that intersect the volume,
sample points are selected, in order, along the ray and mapped through the transfer
function based on the data values at each sample point. The color and transparency is
accumulated until the ray exits the volume, or the pixel becomes fully opaque. In the past,
volume rendering was a compute intensive, typically slow process. However, with
modern CPUs and GPUs, volume rendering performance realizes interactive frame rates.
VTK implements several different volume rendering strategies as implemented by
vtkVolumeMapper and subclasses.



In this example, two render windows are used. One window is connected to a slider and
shows the volume slices. The second window shows a volume-rendered image. The
second window supports the standard interactor bindings. On modern computers, the
application will be fully interactive. (Note: careful examination of the volume rendering
window shows that level-of-detail (LOD) is being used while interacting with the data.
Once the mouse is released, the rendering reverts to full resolution. LOD strategies are
common in computer graphics and VTK supports this in a variety of ways. See
vtkLODActor, for example.)

6.8. Cube Axes Actor
VTK provides many classes for annotating data. In the following example, two renderers
are placed in a single render window, and a vtkCubeAxesActor is used to annotate the
data as shown in the figure below. The two instances of vtkCubeAxesActor are
configured differently so that one always emanates from the corner of the object’s
bounding box closest to the camera, and the other follows the closest edges of the
bounding box. Also, a camera is shared between the two renderers so that the two views
are synchronized with each other.



Other types of annotation in VTK include text (both 2D, residing on top of the 3D
geometry, or 3D, embedded in the 3D scene); captions, popup balloons, axes, labels, x-y
plots, and many other classes.

6.9. Decimation
Decimation, or polygon reduction, is a technique used in computer graphics to reduce the
complex of geometric models. For example, in the figure below, the original model of Big
Buck Bunny contains over 16,000 polygons; the decimated model contains approximately
8,000 polygons. In computer graphics and visualization, it is common to produce models
with large polygon counts. Such models can be difficult to manipulate due to the delays
in rendering and processing the data. Decimation is used to limit data sizes and thereby
improve interaction rates.

In this example, models from the open-source movie Big Buck Bunny are used to
demonstrate decimation (models copyright the Blender Foundation |
www.bigbuckbunny.org). VTK provides several different decimation algorithms with
varying levels of speed and fidelity. The fastest algorithm is vtkQuadricClustering, the
algorithm that generates models with the best fidelity is vtkQuadricDecimation. In the
example above, vtkDecimatePro is used. (See the included documentation for more
information.) Since the source code is provided, interested readers may want to try
different algorithms.



6.10. File Browser
The next example is a useful application for quickly locating large files and directories in
a directory tree. The application uses VTK’s tree map class and other information
visualization classes. A tree map is a layout scheme that represents the “size” of each
node in a tree (including the node’s children) by a rectangle. In turn, the children are
embedded in the parent’s rectangle in a recursive process. The meaning of size varies
depending on the application. In this example, size means the disk space usage of a file
(if a leaf node) or the disk usage of the files and subdirectories contained within it (if an
intermediate, directory node).

To use the application, simply load the directory you are interested in. Depending on the
size of the directory and the subdirectories
and files contained within it, the program
may take anywhere from one or two seconds
to minutes to execute. Once the image
(shown) is generated, you can interact with
the display. Labels are placed in the center of
each rectangle and dynamically resize based
as the user zooms in and out towards the tree
map. Further, by moving the mouse pointer
over the tree map a label will appear
indicating the current directory or file at
which you are pointing. Selecting (left
mouse button) brings up a file browser. Use
the right mouse button to zoom, and the
center button to pan across the tree map.

(A cautionary note: if you run this example
from Visual Studio in debug mode in very large directories, timeouts may occur that produce
errors. The solution is not to run in debug mode.)



7. For More Information
The following section lists additional resources to learn more about VTK and Kitware.

7.1. Manual Pages
The ActiViz .NET product is distributed with extensive documentation on a per class
basis. Refer to this documentation for details regarding the use of the examples shown
here. A good way to view this is through Visual Studio’s object browser view. Choose
“Object Browser” from the view menu, and then browse through the Kitware.VTK
classes.

7.2. VTK.org Web Site
The VTK open-source community maintains resources at http://www.vtk.org. Besides
on-line documentation, user’s and developer’s mailing lists are available for posting and
receiving answers to questions. Refer to vtk.org for more information on joining mailing
lists.

7.3. More Examples
While VTK is implemented in C++, it provides bindings to other programming languages
including Tcl, Python, and Java. Counting C++ examples and those written in these other
programming languages, hundreds of additional examples are available from which to
learn about VTK. In most cases these examples may be directly translated into a .NET
supported programming language. A large number of tests, used to ensure the quality of
VTK, are also useful references for learning about VTK (see http://www.cdash.org to
learn more about Kitware's quality software process). These tests and examples are great
jumping off points for ActiViz users who wish to write their own .NET applications.
● The VTK examples and tests are part of the VTK source code, look in:

VTK/Examples/*
VTK/*/Testing/* (e.g. VTK/Graphics/Testing/Cxx)

● The VTK examples are also available on the web:
https://lorensen.github.io/VTKExamples/site/Cxx
https://lorensen.github.io/VTKExamples/site/CSharp

7.4. VTK Books
VTK was created in 1993 as part of a textbook published by Prentice-Hall. Because the
software was useful, and because of its open-source license, a community quickly grew
up around the system. Since that time, the textbook has evolved and a supplemental VTK
User's Guide has been written. These two books, listed below, are available through
Kitware at http://www.kitware.com/products/books.html and Amazon.com.

● The Visualization Toolkit An Object-Oriented Approach to 3D Graphics. Schroeder,
Martin, Lorensen — this is principally a theory book on visualization, although it
contains many practical examples.

● The VTK User's Guide — shows how to use VTK through an extensive set of
examples.

http://www.vtk.org/
http://www.cdash.org/
https://lorensen.github.io/VTKExamples/site/Cxx
https://lorensen.github.io/VTKExamples/site/CSharp
http://www.kitware.com/products/books.html


7.5. Related Software
Kitware creates and distributes many open-source and proprietary software systems. A
synopsis of some of these systems follows.

Open Source Software (BSD or BSD-style licenses)
● The Visualization Toolkit (VTK) — provides 3D visualization capabilities

including information visualization, volume rendering, modeling, data processing,
and human-computer interaction tools (http://www.vtk.org).

● The Parallel Visualization Application (ParaView) — built on VTK, ParaView is a
distributed, scalable visualization application designed for data sizes ranging from
small to very large (http://www.paraview.org).

● The Insight Segmentation and Registration Toolkit (ITK) — provides a
comprehensive suite of image processing, registration and segmentation tools for
biomedical and other imaging tasks (http://www.itk.org).

● CMake, CTest, CPack, and CDash — these systems form the core of Kitware's
quality software process. CMake is used to manage cross-platform development.
CTest and CDash are the software testing client and server, respectively. CPack is
used to package and distribute software across multiple computing platforms
(http://www.cmake.org, http://www.cdash.org).

● 3D Slicer — is a biomedical application built on VTK and ITK. It has been
successfully employed for medical and biological imaging applications
(http://www.slicer.org).

http://www.vtk.org
http://www.paraview.org
http://www.itk.org
http://www.cmake.org/
http://www.cdash.org
http://www.slicer.org


ActiViz .NET OpenSource Edition

Copyright (c) 2017 Kitware Inc. & Kitware SAS
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither name of Kitware, Inc., Kitware SAS, nor the names of any
contributors

may be used to endorse or promote products derived from this software
without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ActiViz .NET Supported Edition

See Activiz license agreement for more information.

Copyright (c) 2019 Kitware SAS & Kitware Inc.
All rights reserved.

Redistribution and use in source with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Neither name of Kitware, Inc., Kitware SAS, nor the names of any
contributors

may be used to endorse or promote products derived from this software
without

specific prior written permission.

Redistribution in binary form is not permitted.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://www.kitware.eu/wp-content/uploads/2022/01/ActiViz-License-Agreement.pdf



