
 
 
 
 
 
 
 
   
 

 
 
 
 
 
 
 
 

ActiViz .NET User's Guide 
 

Version 5.2 



Page 2 

 

 
 

© 2008 Kitware, Inc. 
http://www.kitware.com 

 
 
 
For More Information: 

·  Kitware, Inc. provides training for VTK. Learn more at 
http://www.kitware.com/products/protraining.html 

·  Kitware, Inc. provides support and consulting services for VTK at 
http://www.kitware.com/products/support.html 

·  Books explaining the theory and use of VTK are available from 
http://www.kitware.com/products/books.html  

 
 
Contributors:  

·  Jeff Baumes — Wikipedia Browser 
·  David Cole — Technical Lead 
·  Jon Crall — Technical Contributor, Wikipedia Browser, examples 
·  Bill Hoffman —  Technical Contributor 
·  Niki Russell —  Documentation, web support 
·  Will Schroeder —  Documentation, examples 

 
and the world-wide VTK community at http://www.vtk.org. 
 
 
 

 
 

Join the VTK Community at http://www.vtk.org. 
 



Page 3 

Table of Contents 
 
1 Introduction................................................................................................................. 4 

1.1 What is ActiViz .NET?....................................................................................... 4 
1.2 What is VTK? ..................................................................................................... 4 
1.3 How ActiViz .NET Differs from VTK............................................................... 4 
1.4 The ActiViz Product Line................................................................................... 4 
1.5 Licensing............................................................................................................. 5 

 
2 Installing ActiViz .NET.............................................................................................. 7 

2.1 System Requirements.......................................................................................... 7 
2.2 Installation........................................................................................................... 7 
2.3 Pre-Compiled Applications............................................................................... 10 
2.4 Configuring Visual Studio ................................................................................ 12 

 
3 Examples................................................................................................................... 15 

3.1 A Ridiculously Brief Overview of VTK........................................................... 15 
3.2 Hello VTK ........................................................................................................ 17 
3.3 Hello VTK Revisited ........................................................................................ 20 
3.4 Load Image Files Dialog................................................................................... 23 
3.5 Delaunay Triangulation .................................................................................... 23 
3.6 Box Widget ....................................................................................................... 24 
3.7 Streamline Generation ...................................................................................... 25 
3.8 Wikipedia Browser ........................................................................................... 25 
3.9 Sphere Puzzle.................................................................................................... 27 
3.10 Volume Rendering............................................................................................ 27 
3.11 Cube Axes Actor............................................................................................... 28 
3.12 Decimation........................................................................................................ 29 
3.13 File Browser...................................................................................................... 29 

 
4 For More Information ............................................................................................... 31 

4.1 Manual Pages .................................................................................................... 31 
4.2 VTK.org Web Site ............................................................................................ 31 
4.3 VTK Examples.................................................................................................. 31 
4.4 VTK Books ....................................................................................................... 31 
4.5 Related Software............................................................................................... 32 

 



Page 4 

1 Introduction 
Welcome to the ActiViz . NET User's Guide. This document is organized into four parts: 
introduction, installation guide, tutorial by example, and additional information. The 
introduction provides a high-level overview of ActiViz .NET. The installation guide 
explains how to install the software. Once installed, you can try out the examples 
distributed with this software, and follow the tutorial by example section in preparation to 
writing your own code. Finally, if you would like to learn more, see the final section 
which provides links to related information. 

1.1 What is ActiViz .NET? 
ActiViz .NET provides an integration layer for The Visualization Toolkit (see the next 
section for more information about VTK) enabling VTK to be used in the Microsoft 
.NET framework. This means that you can tap into the power of VTK using .NET 
programming languages such as C# and Visual Basic .NET. ActiViz .NET is designed for 
the application developer creating software in the Microsoft .NET framework. While the 
system does come with a useful application (i.e., the Wikipedia Browser), realizing the 
full power of ActiViz .NET requires you to write software programs. 

1.2 What is VTK? 
VTK, or the Visualization Toolkit, is an object-oriented software system for 3D graphics, 
data visualization, data processing, human-computer interaction, information 
visualization, volume rendering and much more. It has been under development for over 
a decade, and is used by researchers, developers and businesses from around the world.  
VTK is used to view large datasets in supercomputing environments, and is used in US 
National Labs, research organizations, and supercomputing centers. Tens of millions of 
dollars of labor have been invested in the system from commercial entities, government 
funding, and the open-source community. It is used for a diverse set of applications, 
including volume rendering (VolView http://www.kitware.com/products/volview.html), 
medical imaging (http://www.slicer.org), visualization (http://www.paraview.org), and 
many, many more.  

1.3 How ActiViz .NET Differs from VTK 
VTK is an open-source system written in C++ that you can download and use for free. 
However using VTK requires significant C++ developer skills, and VTK does not easily 
integrate into the Microsoft development environment. ActiViz .NET provides the 
appropriate integration layer so that VTK seamlessly fits into the .NET framework. This 
means that you can use languages such as C# and Visual Basic to add powerful 3D 
visualization capabilities to your own applications. This integration layer provides the 
benefits of the .NET layer including on-line documentation and intelligent coding.  

1.4 The ActiViz Product Line 
The ActiViz product line currently contains two packages: ActiViz COM, which 
integrates into the Microsoft COM framework, and ActiViz .NET. ActiViz COM is used 



Page 5 

to embed VTK capabilities into Microsoft applications such as Word, PowerPoint, and 
Excel. 

1.5 Licensing 
ActiViz .NET is licensed in two flavors. The Personal Edition is a full-featured, free 
version for personal use. This edition contains a Kitware watermark. Purchasing the 
Commercial Edition removes the Kitware watermark. The Commercial Edition must be 
licensed to each developer using the software; the Commercial Edition may be used for 
any purpose including the creation of commercial applications for sale and distribution. 
The following are the Personal Edition and Commercial Edition licenses reproduced in 
their entirety.  
  
ActiViz .NET Personal Edition License: 
 

Copyright (c) 2006-2008 Kitware Inc. 
28 Corporate Drive, Clifton Park, NY, 12065, USA. 
 
This is a legal agreement ("License Agreement") bet ween Kitware, 
Inc. ("Kitware") and you or the organization on who se behalf you are 
undertaking the license described below ("You") in relation to the 
Personal Edition of the ActiViz Product and/or all related materials 
("ActiViz Personal"). By downloading, installing, c opying, or 
otherwise using ActiViz Personal, You accept the fo llowing terms and 
conditions. If You do not agree with any of the ter ms or conditions of 
this License Agreement, do not proceed with the dow nloading, copying, 
installation, or any other use of ActiViz Personal.  
 
You may use ActiViz Personal to develop application s for your personal 
use or evaluation purposes only. No part of ActiViz  Personal may be 
reproduced, distributed, or modified, in any form o r by any means, 
without permission in writing from Kitware. 
 
ActiViz Personal contains an embedded watermark gra phic overlaid on 
every rendering produced by the software. You are p rohibited from 
removing the watermark graphic. 
 
There is a Commercial Edition of ActiViz available for purchase from 
Kitware that is redistributable and that does not c ontain an embedded 
watermark graphic. Please see www.kitware.com or co ntact 
sales@kitware.com for further information on the Co mmercial Edition. 
 
IN NO EVENT SHALL KITWARE BE LIABLE TO ANY PARTY FO R DIRECT, INDIRECT, 
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISI NG OUT OF THE USE 
OF ACTIVIZ PERSONAL, ITS DOCUMENTATION, OR ANY DERI VATIVES THEREOF, 
EVEN IF KITWARE HAS BEEN ADVISED OF THE POSSIBILITY  OF SUCH DAMAGE. 
 
KITWARE SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCL UDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILI TY, FITNESS FOR A 
PARTICULAR PURPOSE, AND NON-INFRINGEMENT.  ACTIVIZ PERSONAL IS 
PROVIDED ON AN "AS IS" BASIS, AND KITWARE HAS NO OB LIGATION TO PROVIDE 
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. 
 
You must accept this License Agreement in order to use ActiViz 
Personal. 
 



Page 6 

ActiViz .NET Commercial Edition License: 
 

Copyright (c) 2006-2008 Kitware Inc. 
28 Corporate Drive, Clifton Park, NY, 12065, USA. 
 
This is a legal agreement ("License Agreement") bet ween Kitware, 
Inc. ("Kitware") and you or the organization on who se behalf you are 
undertaking the license described below ("You") in relation to the 
Commercial Edition of the ActiViz Product and/or al l related materials 
("ActiViz"). By downloading, installing, copying, o r otherwise using 
ActiViz, You accept the following terms and conditi ons. If You do not 
agree with any of the terms or conditions of this L icense Agreement, 
do not proceed with the downloading, copying, insta llation, or any 
other use of ActiViz. ActiViz is licensed, not sold . 
 
You may distribute the software in any end-user app lication that You 
develop using ActiViz in accordance with this Licen se Agreement, 
provided that such distribution does not violate th e restrictions set 
forth below. You are required to ensure that ActiVi z is not reused by 
or with any applications other than those with whic h You distribute it 
as permitted herein. 
 
You may not redistribute ActiViz other than by incl uding ActiViz 
within your own product. You are explicitly not all owed to 
redistribute ActiViz as part of any product that ca n be described as a 
development toolkit or library or is intended for u se by software 
developers and not end-users. 
 
You agree that You will comply with all applicable laws and 
regulations with respect to ActiViz, including with out limitation all 
export and re-export control laws and regulations.  For all other 
uses, no part of ActiViz may be reproduced, distrib uted, or modified, 
in any form or by any means, without permission in writing from 
Kitware. 
 
IN NO EVENT SHALL KITWARE BE LIABLE TO ANY PARTY FO R DIRECT, INDIRECT, 
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISI NG OUT OF THE USE 
OF ACTIVIZ, ITS DOCUMENTATION, OR ANY DERIVATIVES T HEREOF, EVEN IF 
KITWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH  DAMAGE. 
 
KITWARE SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCL UDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILI TY, FITNESS FOR A 
PARTICULAR PURPOSE, AND NON-INFRINGEMENT.  ACTIVIZ IS PROVIDED ON AN 
"AS IS" BASIS, AND KITWARE HAS NO OBLIGATION TO PRO VIDE MAINTENANCE, 
UPDATES, ENHANCEMENTS, OR MODIFICATIONS. 
 
You must accept this License Agreement in order to use ActiViz. 

 



Page 7 

2 Installing ActiViz .NET 
This section describes how to download and install ActiViz .NET, and how to configure  
Microsoft Visual Studio to use ActiViz .NET. 

2.1 System Requirements 
ActiViz .NET runs on the Microsoft XP (SP2) or Vista operating systems. To develop 
with the system, you will need Visual Studio 2005 or later. 
 
While VTK itself can run on small to large computers, it is a sophisticated, powerful 
system that requires adequate computing resources. We advise using hardware with a 
good 3D graphics cards, 2 GB memory and a modern CPU. 

2.2 Installation 
Once you have downloaded the appropriate installer, open it and follow the instructions. 
The installation process proceeds as follows. First, you will see the welcome splash 
screen. Choose “Next>” and proceed to the next step. 
 

 
 
Next, please review the license agreement and agree to its terms. 



Page 8 

 
 
Indicate where on your computer you would like to install the software. For the purposes 
of this User’s Guide, the installation location is in C:\Program Files\ActiViz.NET 5.2.0. 
(Note that administrative privileges are required to install ActiViz in the “Program Files” 
directory. However, you may install the software anywhere on the system.) Choose 
“Next” and proceed with the installation. You will also need to indicate where to place 
the installation on your Start Menu Folder. 
 

 
 



Page 9 

Once you select “Install” the software installation process begins as illustrated below. It 
should take less than a minute. 
 

 
 

That’s it, you have successfully installed ActiViz .NET on your computer.  
 

 
 



Page 10 

2.3 Pre-Compiled Applications 
ActiViz  .NET comes with two pre-compiled applications that is ready to run (i.e., you do 
not have to write software, you can just run the application). The first application, the 
Wikipedia Browser, can be accessed from the Start Menu. This application uses VTK’s 
information visualization classes to show relationships between Wikipedia entries as a 
graph (or network). You can interact with this graph to see how articles relate to one 
another. (The source code for this application is included in the Examples directory in the 
ActiViz .NET distribution.) The figures below show the application in action. The graph 
in Figure 1 shows the result of querying the topic “computer vision” by typing this term 
into the “Origin Article” field (make sure to click the “Go” button to initiate the process). 
The graph in Figure 2 is an expanded version of the first graph, where the “computer-
human interaction” node is expanded by selecting the node via a pick action or 
rectangular, bounding box selection. 
 

 
 

Figure 1. The Wikipedia Browser used to query the “computer vision” topic. 
 
Besides the graph that enables you to select and interact with Wikipedia entries, the panel 
on the right hand side of the application is an embedded browser that shows the last 
selected Wikipedia entry. 
 



Page 11 

Note that the source code for the Wikipedia Browser is available as part of the ActiViz 
.NET distribution. Feel free to change and experiment with it. Using VTK’s information 
visualization classes, there are many other data views and layout strategies that can be 
employed. 
 
A second example, the File Browser (see Section 3.13) is also available from the Start 
Menu. As explained in this section, the File Browser uses a tree map display to show 
directories and files that use large amounts of disk space. 
 

 
 

Figure 2. Expanding the human-computer interaction topic in the Wikipedia Browser. 
 



Page 12 

2.4 Configuring Visual Studio 
Once you have installed ActiViz .NET, you need to configure 
Visual Studio so that the ActiViz control is available for 
creating applications. The following demonstrates how to do 
this for Visual Studio 8. 
 
First, choose “Tools” from the menu bar and select “Choose 
Toolbox Items” as shown in the figure. A popup will appear.  
 
 
 
 
 
 
 
 
 
 
 

 
 
You will need to browse for .NET Framework Components by selecting “Browse” to 
search in the ActiViz bin directory (e.g., C:\Program Files\ActiViz.NET 5.2.0\bin). The 
following selection will appear: 
 



Page 13 

 
 
Select the Kitware.VTK.dll . This will add the RenderWindowControl into your toolbox, 
as we will soon see in the following figures. 
 
To create a .NET application (shown here in C#), select “New Project” from the Visual 
Studio menu bar. The following dialog box will appear, prompting you to specify a name 
and location for your Windows Application. 
 

 
 
Visual Studio will now create the project for you. To add a VTK RenderWindowControl 
to your application, choose the “Toolbox” menu item from the “View” menu. Under the 
General category in the toolbox, the RenderWindowControl will appear. To add the 



Page 14 

control to your application, select the RenderWindowControl and place it into the form 
(as shown in the figure). 
 

 
 
At this point, you can begin to write code. The following examples will show you how to 
do this. 



Page 15 

3 Examples 
The following are an eclectic mix of examples demonstrating some of the power of VTK. 
While a document of this scope cannot cover VTK in any detail, we have included these 
examples to give you a flavor of what you can do with VTK. Note that the examples are 
written in C# and Visual Basic; and not all the code is shown in this document for the 
sake of brevity. Complete code is available in the ActiViz Examples folder. 
 
Important Notes: These examples were written to be simple, clear demonstrations of the 
potential of ActiViz .NET. In general less than an hour was spent writing these examples, 
and even the Wikipedia browser was completed in well under a day. Thus Kitware does 
not claim that these are bulletproof applications meant for industrial application. Further, 
there are some specific limitations of which you should be aware: 
 

·  If you install the software in the “Program Files” directory (or other privileged 
location), then you will have to build the software with admin privileges, or 
preferably, copy the examples to a non-privileged location and fix the appropriate 
reference paths. 

·  If you are if building with 32-bit ActiViz (Win32 x86) on a Win64 installation of 
Windows (XP64 or Vista64) you must change the "Target CPU" of the project to 
use x86 as the target CPU type, not "Any CPU" which is typical. This step is 
necessary because unmanaged code specific to the given processor in linked in 
during the build process. With the setting “Any CPU”, the system runs the 
managed code as x64 and expects any unmanaged dlls to be in x64 format.  

·  The two pre-compiled applications, the Wikipedia Browser and the File Browser, 
may experience problems when requests lead to processing large amounts of data. 
Please refer to the specific examples for further clarification. 

 
Despite these caveats, VTK is commonly used in applications requiring robust, high-
performance code. However, this requires extra programming safeguards omitted from 
these example for the sake of clarity. 
 
We begin with a brief introduction of VTK. 

3.1 A Ridiculously Brief Overview of VTK 
Though VTK is a large and complex software system, knowledge of its conceptual 
framework will greatly assist you in understanding the following examples. 
 
First, VTK is an object-oriented system. The practical realization of this design is that 
objects are instantiated and then combined in a variety of patterns to form applications. 
Each class represents a focused piece of functionality. The instances (or objects) of these 
classes are manipulated by invoking methods upon them. 
 
Second, VTK is a data-centric toolkit manifesting a data-flow pipeline. The so-called 
visualization pipeline is created by connecting algorithms (also called process objects) 
together. Behind the scenes, the algorithms exchange data objects between themselves 



Page 16 

across the pipeline. For example, a pipeline can be created that reads polygonal data, 
decimates the data, smooths it, and then passes it on to VTK’s rendering subsystem. 
Practically the purpose of the visualization pipeline is to transform data into rendering 
primitives which are eventually displayed through VTK’s graphics subsystem; although 
in some cases VTK may just be used as a data processing engine—loading data, 
processing it, and writing it back to disk. 
 
The graphics subsystem is used to display data of various forms including polygonal data 
and volumes (i.e., regularly sampled data). The rendering system consists of the 
following key objects that are combined into a scene to produce the final 3D display.  
 

·  vtkActor and vtkProp — the objects to be rendered that appear in the scene. In 
general, we refer to these objects as “actors” although vtkActor is in fact a 
subclass of vtkProp (like the “props” found on stage). 

·  vtkCamera — the object used to project the actors from 3D space into a 2D 
image. 

·  vtkLight — used to illuminate the scene. 
·  vtkProperty — used to apply material (i.e., lighting) properties to actors. 
·  vtkRenderer — this is the object where the rendered image is shown. 
·  vtkRenderWindow — one or more renderers can be combined into a render 

window. 
 
This organization of objects is consistent with the “lights, cameras, actors” conceptual 
model that is familiar to many of us from the movie/video making business. Note that 
many other objects are present behind the scenes such as transformation matrices 
(vtkTransform), interactors (process mouse and keyboard events), and texture maps 
(vtkTexture). Note that when building Form Applications, ActiViz .NET system 
combines the vtkRenderer and vtkRenderWindow into a single class called the 
“RenderWindowControl”. This is the form that is created in ActiViz applications and 
embedded into the .NET program. 
 
One important note: the vtkRenderWindowInteractor class is the keystone class for 
managing mouse and keyboard events in the render window. Through interactor styles 
(subclasses of vtkInteractorObserver) it is possible to customize the interaction behavior. 
By default, the interactor supports the following bindings: 
 

·  left mouse — rotate camera 
·  middle mouse — translate camera 
·  right mouse — zoom in/out 
·  keypress j — enter joystick mode (mouse down causes continuous camera 

motion), exits trackball mode 
·  keypress t — enter trackball mode (mouse down plus motion causes camera 

motion), exits joystick mode 
·  keypress f — press this key when over an actor (a pick is performed behind the 

scenes); the camera focal point is set to the picked position and the camera flies 
towards the point. 



Page 17 

·  keypress w — the actors are shown in wireframe 
·  keypress s — the actors are shown as surfaces 
·  keypress r — reset the camera so that all visible actors appear in the scene. 

 
The examples that follow in this section all implement these mouse and keyboard 
bindings. 
 
Besides the basic classes described here, there are hundreds more classes that implement 
key functionality for the VTK system. This includes filters for processing data, 
interaction widgets for direct manipulation of data, image processing, volume rendering, 
information visualization, mathematics, and computational geometry (to name just a 
few). The following examples demonstrate a variety of ways in which VTK can be used, 
and how to use VTK in the .NET framework. 

3.2 Hello VTK 
In the first example we will create a console 
application. Begin by choosing a New 
Project as shown in the menus to the right. A 
dialog will appear as shown below.  
 
 
 
 
 
 
Select “Console Application” and a stub file 
will be created (here called Program.cs) as 
listed in the text below. 
 

 

 



Page 18 

 
using  System; 
using  System.Collections.Generic; 
using  System.Text; 
 
using  Kitware.VTK; 
 
namespace  HelloVTK 
{ 
    class  Program 
   { 
        static  void  Main( string [] args) 
        { 
        // add code here 
        } 
    } 
} 
 
Now it’s simply a matter of adding in the appropriate references 
and writing some VTK code. In this example we will use C#. 
(Please read the short introduction to VTK to help clarify some 
of the concepts.) To add in references, make sure that the line 
“using Kitware.VTK;” (highlighted above) is added to your application. Next, right click 
on “HelloVTK” in the Solution Explorer, and choose “Add Reference” as shown in the 
figure to the right. This will bring up a dialog, at which point you will “Browse” to the 
ActiViz .NET install location C:\Program Files\ActiViz.NET 5.2.0\bin (or appropriate). 
Then choose the two references “Kitware.mummy.Runtime.dll” and “Kitware.VTK.dll” 
as shown in the figure below. 
 

 

 



Page 19 

Next, insert the appropriate VTK code into the Main() function as exemplified by the 
following. 
 
    public static void Main(String[] argv) 
    { 
        // Create a simple sphere. A pipeline is cr eated. 
        sphere = vtkSphereSource.New(); 
        sphere.SetThetaResolution(8); 
        sphere.SetPhiResolution(16); 
         
        shrink = vtkShrinkPolyData.New(); 
        shrink.SetInputConnection(sphere.GetOutputP ort()); 
        shrink.SetShrinkFactor(0.9); 
 
        mapper = vtkPolyDataMapper.New(); 
        mapper.SetInputConnection(shrink.GetOutputP ort()); 
 
        // The actor links the data pipeline to the  rendering subsystem 
        actor = vtkActor.New(); 
        actor.SetMapper(mapper); 
        actor.GetProperty().SetColor(1,0,0); 
 
        // Create components of the rendering subsy stem 
        // 
        ren1 = vtkRenderer.New(); 
        renWin = vtkRenderWindow.New(); 
        renWin.AddRenderer(ren1); 
        iren = vtkRenderWindowInteractor.New(); 
        iren.SetRenderWindow(renWin); 
 
        // Add the actors to the renderer, set the window size 
        // 
        ren1.AddViewProp(actor); 
        renWin.SetSize(250,250); 
        renWin.Render(); 
        camera = ren1.GetActiveCamera(); 
        camera.Zoom(1.5); 
 
        // render the image and start the event loo p 
        // 
        renWin.Render(); 
        iren.Initialize(); 
        iren.Start(); 
 
        deleteAllVTKObjects(); 
    } 
 
    static vtkSphereSource sphere; 
    static vtkShrinkPolyData shrink; 
    static vtkPolyDataMapper mapper; 
    static vtkActor actor; 
    static vtkRenderer ren1; 
    static vtkRenderWindow renWin; 
    static vtkRenderWindowInteractor iren; 
    static vtkCamera camera; 
 

 



Page 20 

    ///<summary>Deletes all static objects created< /summary> 
    public static void deleteAllVTKObjects() 
    { 
        //clean up vtk objects 
        if (sphere != null) { sphere.Dispose(); } 
        if (shrink != null) { shrink.Dispose(); } 
        if (mapper != null) { mapper.Dispose(); } 
        if (actor != null) { actor.Dispose(); } 
        if (ren1 != null) { ren1.Dispose(); } 
        if (renWin != null) { renWin.Dispose(); } 
        if (iren != null) { iren.Dispose(); } 
        if (camera != null) { camera.Dispose(); } 
    } 
 
Compiling and running the C# program yields the red sphere above. (Note that some 
interaction with the camera was performed to move the camera into the position shown.) 
 
In this example, a simple pipeline is implemented that generates some polygonal data (the 
sphere source); shrinks the polygons towards their center (the shrink filter), and then 
maps the data (e.g., polygons) to the graphics library. Since no lights and cameras are 
manually created, they are automatically created. Also, the vtkRenderWindowInteractor 
is used to control mouse and keyboard events in the window. Note: calling iren.Start() in 
the example runs a Windows message loop. To exit the message loop, and hence the 
application, simply close the window. 

3.3 Hello VTK Revisited 
Here, the HelloVTK example is recreated, except this time a Windows Form Application 
is created. Initially following the same process we used with the prior example, a new 
project is created except this time we select “Windows Application.” Next, go to the 
View Menu and make sure the Toolbox is visible. Scroll down and select the 
RenderWindowControl, at which point you can place it into the form as shown in the 
following figure (Section 2.4 also describes this process). 
 

 



Page 21 

 
Next, double click on the RenderWindowControl to bring up the C# code: 
 
using  System; 
using  System.Collections.Generic; 
using  System.ComponentModel; 
using  System.Data; 
using  System.Drawing; 
using  System.Text; 
using  System.Windows.Forms; 
 
namespace  HelloVTK 
{ 
    public  partial  class  Form1 : Form 
    { 
        public  Form1() 
        { 
            InitializeComponent(); 
        } 
 
        private  void   
        renderWindowControl1_Load( object  sender, EventArgs  e) 
        { 
         //add code here 
        } 
    } 
}  
 
As in the previous example, code can now be inserted into the skeleton application. Make 
sure that “using Kitware.VTK;” is added, and add references to the solution. Finally, note 
that the control provides some convenience methods for accessing the renderer and 
render window, and builds in a render window interactor. Here is what the code looks 
like, and the image that results from running the application: 
 
using  System; 
using  System.Collections.Generic; 
using  System.ComponentModel; 
using  System.Data; 
using  System.Drawing; 
using  System.Text; 
using  System.Windows.Forms; 
 
using  Kitware.VTK; 
 
namespace  HelloVTK 
{ 
    public  partial  class  Form1 : Form 
    { 
        public  Form1() 
        { 
            InitializeComponent(); 
        } 
 
        private  void   
        renderWindowControl1_Load( object  sender, EventArgs  e) 

 
HelloVTK Windows Application. 



Page 22 

        { 
            // Create a simple sphere. A pipeline is created. 
            vtkSphereSource  sphere = vtkSphereSource .New(); 
            sphere.SetThetaResolution(8); 
            sphere.SetPhiResolution(16); 
 
            vtkShrinkPolyData  shrink = vtkShrinkPolyData .New(); 
            shrink.SetInputConnection(sphere.GetOut putPort()); 
            shrink.SetShrinkFactor(0.9); 
 
            vtkPolyDataMapper  mapper = vtkPolyDataMapper .New(); 
            mapper.SetInputConnection(shrink.GetOut putPort()); 
 
            // Link the data pipeline to the rendering subsyste m 
            vtkActor  actor = vtkActor .New(); 
            actor.SetMapper(mapper); 
            actor.GetProperty().SetColor(1, 0, 0); 
 
            // Create components of the rendering subsystem 
            // 
            vtkRenderer  ren1 = renderWindowControl1.RenderWindow. 
                  GetRenderers().GetFirstRenderer() ; 
            vtkRenderWindow  renWin = renderWindowControl1.RenderWindow; 
 
            // Add the actors to the renderer, set the window s ize 
            // 
            ren1.AddViewProp(actor); 
            renWin.SetSize(250,250); 
            renWin.Render(); 
            vtkCamera  camera = ren1.GetActiveCamera(); 
            camera.Zoom(( double )1.5); 
        } 
    } 
}  
 
Note that the RenderWindowControls has an 
important property that aid in debugging. If 
the property AddTestActors is set to “True” 
then running the application results in an 
image similar to the one shown to the right. 
An extra cones is inserted into the VTK 
scene. This property addresses the frustrating 
blank image problem that can occur when the 
VTK pipeline is configured incorrectly, or the 
application is executing improperly. 
 
In the following examples, we dispense with 
the details of the code and project creation. 
Rather we provide an overview of some of 
VTK’s functionality, including highlighting 
some code snippets that are relevant to key 
functionality. The complete code, in C# and Visual Basic, is available in the installation 
directory under the Examples subdirectory. 

       



Page 23 

 

3.4  Load Image Files Dialog  
 This example demonstrates a simple dialog to open and display an image. It supports 
several file formats including .png, .jpg, .jpeg, .tif, .slc, .dicom, .minc, .bmp, and .pmn. It 
will also support .vtk files, which supports data types including polygonal data, structured 
grids, and unstructured grids. 
 
 This image viewer is unusual in that it places the image on a quadrilateral polygon using 
texture mapping. The polygon exists in 3D space so it is possible to move the camera  
around the polygon using the render window interactor. The “Simple Dialog Example” 
illustrates what the application looks like after loading a simple image file. 
 

3.5 Delaunay Triangulation 
The Delaunay triangulation is a construct in 
computational geometry used to generate 
triangulations (i.e., polygonal meshes 
where the polygons are all triangles). It has 
many useful functions including 
interpolating data. In this example, a 
random set of points in a 2D plane is 
generated. Next, VTK filters are used to 
place tubes around the edges and ball 
glyphs at the mesh vertices. You may wish 
to play with the number of points 
generated, as well as the appearance of the 
graph by modifying the underlying C# 
source code. 
 

 

 



Page 24 

3.6 Box Widget 
VTK has an extensive set of widgets. 
Widgets are objects that appear in the 
scene but may be directly interacted 
with. Widgets are analogous to 2D 
GUI devices such as buttons and 
sliders, except in 3D they can take on 
much more complex forms. The 
figure to the right shows one very 
general widget called the box widget. 
 
The box widget has six faces that can 
be selected and then rotated. Each 
face can be translated separately to 
modify the extent of the box. The box 
can also be uniformly scaled and 
translated. The widget can be queried 
to return useful information such as 
the current transformation matrix, and the six planes that form the box. In VTK, this 
information can be used by the data processing pipeline to perform additional operations. 
For example in the figure shown, the six planes are used to clip the mace. The surface of 
the mace outside of the box is grey, the surface inside is green. Also, when you run the 
example, keypress––i is used to enabled/disable the widget (it will appear and disappear 
from the scene). 
 
One of the important features of this example is the use of events and associated 
callbacks to couple the widget with other VTK objects. In this example, we define a 
callback function as follows: 
 
    public static void  
        SelectPolygons(vtkObject sender, vtkObjectE ventArgs e) 
    { 
        boxWidget.GetPlanes((vtkPlanes)planes); 
        selectActor.VisibilityOn(); 
    } 
 
Here the “planes” object is a collection of the six planes retrieved from the widget. In 
turn, the planes define a clip function to the vtkClipPolyData filter. Next, the callback 
function is connected to the box widget by observing the end interaction event. (Typically 
widgets provide three events: start interaction, interaction, and end interaction.) 
 
        boxWidget.EndInteractionEvt +=  
         new vtkObject.vtkObjectEventHandler(Select Polygons); 
 
Thus, when the widget is manipulated, the event is triggered (at the end of motion) and 
the callback function is invoked. Thus widgets are very easy to add and to use in ActiViz. 
 

 



Page 25 

3.7 Streamline Generation 
This example shows some of the 
visualization capabilities of VTK. A 
structured grid (think of a volume warped 
in 3D space so that it is topologically 
regular but geometrically distorted) is read 
with associated scalar and vector data. This 
3D dataset is the result of a computational 
simulation of combustion in a segment of 
an annular combustor from an aircraft 
engine.  
 
To visualize the data, streamlines are 
generated. These synthetic streamlines are 
similar to smoke traces used in wind 
tunnels, and represent the path that a 
massless particle would take in a vector field (here the vector field is the flow 
momentum). The streamlines are modified by using a VTK filter to place a ribbon on the 
streamline. Since streamlines must have a starting point, a line widget is used to seed the 
streamlines.  
 
Once you compile and run the example, aside from using the interactor to position the 
camera, it is possible to move the line widget. Do this by selecting the widget end points 
(marked as little balls), or grabbing the line and translating it around. It is also possible to 
modify the code to increase the line resolution in order to generate more streamlines 
emanating from it. 

3.8 Wikipedia Browser 
This Wikipedia Browser was briefly described in Section 2.3. The general idea is to 
enable browsing of Wikipedia (the free encyclopedia wikipedia.org) pages. The 
application consists of two panels: on the left a graph browser indicating the relationship 
of Wikipedia articles to one another; on the right, the Wikipedia web page corresponding 
to the recently selected graph node.  
 
The application enables the user to type in a search string as a start point for the browser 
(make sure to select the “Go” button to initiate the search). In the figure below, the initial 
search string is “VTK”. Given this initial string, the search expands out into N links 
where N is specified by the user (here the default value is 10). The first N links in the 
initial string are followed to other Wikipedia pages, and this process continues H times, 
where H is the user specified number of hops to follow. Note that N and H must be 
carefully specified. If these numbers are big enough, the graph may grow rapidly (it is 
possible to crash the application as currently written in N and H are too large). Further, 
since the nodes represent a web page, each page must be accessed over the internet, and 
then parsed, which can be very slow depending on network performance. 
 

 



Page 26 

Once the initial graph is specified, it is possible to expand it iteratively. Simply use the 
left mouse button to select a rectangular selection region in the left panel. Any nodes in  
the selection region are further expanded in the graph. Note that when expanded, VTK’s 
graph layout algorithm will run and can reposition the existing graph nodes. You may 
also select a single node by left-mouse clicking on the node. If you select a single node, 
its corresponding Wikipedia page is shown in the right panel. If you select a group of 
nodes with a rectangular selection, then an arbitrary selection from the group is made and 
the corresponding Wikipedia page is shown in the right panel. 

 
The graph layout has some features that facilitate navigation. While the left mouse button 
is used for selection, the middle mouse button can be used to translate the graph, and the 
right mouse button to zoom in and out (move the mouse “up” to zoom, and “down” to 
zoom out). Zooming in and out causes text to appear and disappear dynamically. Finally, 
if your mouse has a scrolling wheel, scrolling the wheel also zooms in and out on the 
graph. 
   
The source code for this application is included in the ActiViz .NET examples directory; 
feel free to extend it. Other VTK classes exist to improve the behavior of this application, 
including ways to adjust graph layout, control mouse bindings, change the selection 
process, and populate the scene. 

 



Page 27 

3.9 Sphere Puzzle 
This is a cute example much like a 
Rubik’s cube puzzle except on a 
sphere rather than a cube. After 
the application initializes itself by 
randomizing the panels on the 
sphere, the user attempts to restore 
the sphere to the proper coloring 
(to see the final coloring, hit the 
“Reset” button). 
 
Moving the sphere panels involves 
rotating the sphere either in the 
longitudinal or latitudinal 
directions. By moving the mouse 
pointer close to a latitude or 
longitude line, a portion of the 
sphere will light up, indicating the 
portion that will rotate. By hitting 
the “m” key, the highlighted 
portion of the sphere will rotate. 
Repeat this process until you 
return the sphere to the proper 
coloring. 

3.10 Volume Rendering 
Volume rendering is a visualization technique for rendering regularly sampled 3D data 
(think of a stack of 2D images or slices, with a uniform vertical spacing between slices). 
While there are many ways of implementing volume rendering, probably the simplest 
way to think about it as a ray casting algorithm. Imagine that the volume varies in 
transparency, where part of the volume may be fully transparent, and part opaque. Further 
the volume may vary in color as well. A transfer function controls the transparency and 
color; the transfer function typically maps the volume data value (e.g., intensity) into a 
color and transparency value. Then to volume render, rays are cast from the camera 
through each pixel in the renderer. Some may pass into and then traverse the volume, 
while other rays may miss the volume entirely. For those rays that intersect the volume, 
sample points are selected, in order, along the ray and mapped through the transfer 
function based on the data values at each sample point. The color and transparency is 
accumulated until the ray exits the volume, or the pixel becomes fully opaque. In the past, 
volume rendering was a compute intensive, typically slow process. However, with 
modern CPUs and GPUs, volume rendering performance realizes interactive frame rates. 
VTK implements several different volume rendering strategies as implemented by 
vtkVolumeMapper and subclasses. 
 
In this example, two render windows are used. One window is connected to a slider and 
shows the volume slices. The second window shows a volume-rendered image. The  

 



Page 28 

second window supports the standard interactor bindings. On modern computers, the 
application will be fully interactive. (Note: careful examination of the volume rendering 
window shows that level-of-detail (LOD) is being used while interacting with the data. 
Once the mouse is released, the rendering reverts to full resolution. LOD strategies are 
common in computer graphics and VTK supports this in a variety of ways. See 
vtkLODActor, for example.) 

3.11 Cube Axes Actor 
VTK provides many classes for annotating data. In the following example, two renderers 
are placed in a single render window, and a vtkCubeAxesActor is used to annotate the 
data as shown in the figure below. The two instances of vtkCubeAxesActor are 
configured differently so that one always emanates from the corner of the object’s 
bounding box closest to the camera, and the other follows the closest edges of the 
bounding box. Also, a camera is shared between the two renderers so that the two views 
are synchronized with each other. 

 

 

 



Page 29 

 
 Other types of annotation in VTK include text (both 2D, residing on top of the 3D 
geometry, or 3D, embedded in the 3D scene); captions, popup balloons, axes, labels, x-y 
plots, and many other classes. 

3.12 Decimation 
Decimation, or polygon reduction, is a technique used in computer graphics to reduce the 
complex of geometric models. For example, in the figure below, the original model of 
Big Buck Bunny contains over 16,000 polygons; the decimated model contains 
approximately 8,000 polygons. In computer graphics and visualization, it is common to 
produce models with large polygon counts. Such models can be difficult to manipulate 
due to the delays in rendering and processing the data. Decimation is used to limit data 
sizes and thereby improve interaction rates. 
 
In this example, models from the open-source movie Big Buck Bunny are used to 
demonstrate decimation (models copyright the Blender Foundation | 
www.bigbuckbunny.org). VTK provides several different decimation algorithms with 
varying levels of speed and fidelity. The fastest algorithm is vtkQuadricClustering, the 
algorithm that generates models with the best fidelity is vtkQuadricDecimation. In the 
example above, vtkDecimatePro is used. (See the included documentation for more 
information.) Since the source code is provided, interested readers may want to try 
different algorithms. 

3.13 File Browser 
The next example is a useful application for quickly locating large files and directories in 
a directory tree. The application uses VTK’s tree map class and other information 
visualization classes. A tree map is a layout scheme that represents the “size” of each 
node in a tree (including the node’s children) by a rectangle. In turn, the children are 

 



Page 30 

embedded in the parent’s rectangle in a recursive process. The meaning of size varies 
depending on the application. In this example, size means the disk space usage of a file 
(if a leaf node) or the disk usage of the files and subdirectories contained within it (if an 
intermediate, directory node). 
 
To use the application, simply load the directory you are interested in. Depending on the 
size of the directory and the subdirectories 
and files contained within it, the program 
may take anywhere from one or two seconds 
to minutes to execute. Once the image 
(shown) is generated, you can interact with 
the display. Labels are placed in the center of 
each rectangle and dynamically resize based 
as the user zooms in and out towards the tree 
map. Further, by moving the mouse pointer 
over the tree map a label will appear 
indicating the current directory or file at 
which you are pointing.  Selecting (left 
mouse button) brings up a file browser. Use 
the right mouse button to zoom, and the 
center button to pan across the tree map. 
 
(A cautionary note: if you run this example 
from Visual Studio in debug mode in very large directories, timeouts may occur that 
produce errors. The solution is not to run in debug mode.) 

 



Page 31 

4 For More Information 
The following section lists additional resources to learn more about VTK and Kitware. 

4.1 Manual Pages 
The ActiViz .NET product is distributed with extensive documentation on a per class 
basis. Refer to this documentation for details regarding the use of the examples shown 
here. A good way to view this is through Visual Studio’s object browser view. Choose 
“Object Browser” from the view menu, and then browse through the Kitware.VTK 
classes. 

4.2 VTK.org Web Site 
The VTK open-source community maintains resources at http://www.vtk.org. Besides 
on-line documentation, user’s and developer’s mailing lists are available for posting and 
receiving answers to questions. Refer to vtk.org for more information on joining mailing 
lists. 

4.3 VTK Examples 
While VTK is implemented in C++, it provides bindings to other programming languages 
including Tcl, Python, and Java. Counting C++ examples and those written in these other 
programming languages, hundreds of additional examples are available from which to 
learn about VTK. In most cases these examples may be directly translated into a .NET  
supported programming language. A large number of tests, used to ensure the quality of 
VTK, are also useful references for learning about VTK (see http://www.cdash.org to 
learn more about Kitware's quality software process). These tests and examples are great 
jumping off points for ActiViz  users who wish to write their own .NET applications.  
 

·  The VTK examples are part of the VTK source code download. Look in 
VTK/Examples/*. 

·  The VTK tests are distributed throughout the source code tree. Look in 
VTK/*/Testing/* (e.g. VTK/Graphics/Testing/Cxx). 

 

4.4 VTK Books 
VTK was created in 1993 as part of a textbook published by Prentice-Hall. Because the 
software was useful, and because of its open-source license, a community quickly grew 
up around the system. Since that time, the textbook has evolved and a supplemental VTK 
User's Guide has been written. These two books, listed below, are available through 
Kitware at http://www.kitware.com/products/books.html and Amazon.com. 
 

·  The Visualization Toolkit An Object-Oriented Approach to 3D Graphics. 
Schroeder, Martin, Lorensen — this is principally a theory book on visualization, 
although it contains many practical examples.  

·  The VTK User's Guide — shows how to use VTK through an extensive set of 
examples. 



Page 32 

4.5 Related Software 
Kitware creates and distributes many open-source and proprietary software systems. A 
synopsis of some of these systems follows. 
 
Open Source Software (BSD or BSD-style licenses) 

·  The Visualization Toolkit (VTK) — provides 3D visualization capabilities 
including information visualization, volume rendering, modeling, data processing, 
and human-computer interaction tools (http://www.vtk.org). 

·  The Parallel Visualization Application (ParaView) — built on VTK, ParaView is 
a distributed, scalable visualization application designed for data sizes ranging 
from small to very large (http://www.paraview.org). 

·  The Insight Segmentation and Registration Toolkit (ITK) — provides a 
comprehensive suite of image processing, registration and segmentation tools for 
biomedical and other imaging tasks (http://www.itk.org). 

·  CMake, CTest, CPack, and CDash — these systems form the core of Kitware's 
quality software process. CMake is used to manage cross-platform development. 
CTest and CDash are the software testing client and server, respectively. CPack is 
used to package and distribute software across multiple computing platforms 
(http://www.cmake.org, http://www.cdash.org). 

·  Slicer — is a biomedical application built on VTK and ITK. It has been 
successfully employed for medical and biological imaging applications 
(slicer.org). 

 
Commercial Offerings 

·  VolView — is an intuitive, interactive system for volume visualization that allows 
researchers to quickly explore and analyze complex 3D medical or scientific data 
http://www.kitware.com/products/volview.html. 

·  ActiViz COM — useful to extend VTK functionality in ActiveX Control 
Containers, including Visual Basic 6, Word, PowerPoint, Excel, Visio and 
Internet Explorer. 

 
 

 
 



Page 33 

 
 
 
 
 
 
 

 
 

 


